Python散点图(Scatter Plot):高阶分析、散点图矩阵、三维散点图及综合应用

散点图:数据分析的利器

在数据分析领域,散点图是一种直观且强大的可视化工具,广泛应用于揭示变量间的相关性以及识别数据集中的异常值。本文将深入探讨散点图的这两种关键功能,并结合实际案例与Python代码示例,带您全面了解散点图的应用。

一、散点图如何展示变量间的相关性

正相关关系

当两个变量呈现正相关关系时,数据点会呈现出从左下方向右上方延伸的分布趋势。例如,随着广告投入的增加,产品销售额也相应上升。

import matplotlib.pyplot as plt
import numpy as np

# 生成正相关的数据
np.random.seed(<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

赛卡

逐梦而行即辉煌

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值