[bzoj4959][乱搞]Visual Python++

本文围绕Visual Python++编程语言展开,介绍其语句块以矩形表示,可嵌套且边界不重叠。给出开发解析器部分的编程题,包含输入输出要求及样例。题解指出不能一步解决,应按x从右往左扫,用set匹配括号,最后再判交集,强调从小方面入手分析性质。

Description

在最近被提出的Visual Python++编程语言中,一个语句块被表示为一个由字符组成的矩形,其中左上角在r1行c1列,
右下角在r2行c2列。对于r1≤r≤r2,c1≤c≤c2,所有位于(r,c)的字符被认为是属于这个块的内容。在这些位置中,
满足r=r1或r=r2或c=c1或c=c2的位置被称为是边界。语句块可以嵌套 (矩形包含在其他矩形中) 任意层。在语法正
确的程序中,任意两个语句块要么是嵌套的 (一个包含在另一个中) ,要么是不交的 (不重叠) 。在这两种情况中,
他们的边界也不能重叠。编程人员不需要画出经典程序中的所有矩形,这太浪费时间了,而且Visual Python++也不
可能称为下一个ICPC编程语言。因此程序员只需要在左上角位置放一个字符 ‘┌’ ,在右下角位置放一个字符’┘’
。解析器会自动匹配相应的拐角来获取程序的嵌套结构。你的团队刚刚获得了五小时的合同来开发解析器的这一部 分。

Input

第一行包含一个整数n(1≤n≤10^5),表示拐角对的数量。
接下来n行,每行包含两个整数r和c(1≤r,c≤10^9),指定r行c列为一个左上角。 接下来n行以相同的方式指定了右下角。
所有的拐角位置互不相同。

Output

输出n行,每行包含一个整数。第i行的整数j表示第i个左上角和第j个右下角组成一个矩形。
左上角和右下角均按照他们在输入中的顺序从1到n标号。输出必须是1到n的排列,从而匹配可能嵌套的矩形。
如果存在超过一种合法的匹配,任意一组合法的匹配都是可接受的。如果不存在合法的匹配,输出syntax error。

Sample Input

样例1

2

4 7

9 8

14 17

19 18

样例2

2

4 7

14 17

9 8

19 18

样例3

2

4 8

9 7

14 18

19 17

样例4

3

1 1

4 8

8 4

10 6

6 10

10 10

Sample Output

样例1

2

1

样例2

1

2

样例3

syntax error

样例4

syntax error

题解

这个题他欺骗我感情…
话说回来还是自己菜吧…
首先这题不能想着一步解决…想着这个我就fake不会做了啊qwq
我们按xxx从右往左扫
如果遇到一个右括号,我们把他扔进setsetset中,如果遇到一个yyy和它相同的,显然是个不合法情况
如果遇到一个左括号,我们在setsetset中找一个yyy比他大且最小的右括号匹配
如果没有显然又是不合法情况
看到这里可能你会发现,这样构造下去,方案是唯一的啊?
…嗯方案确实是唯一的…
我们考虑一个左括号不匹配第一个yyy比他大的右括号的方案会怎么样
那么显然有yi≤yj≤yky_i\leq y_j \leq y_kyiyjyk,其中j,kj,kj,k为右括号,iii为左括号
那么不管怎么样,由于剩余的左括号都在左边。总会引出某个一个矩形的上边界或者下边界过了(i,j)(i,j)(i,j)这个矩形,所以一定会出现有交集的情况
那么这样构造出来之后,剩余的就是再判一次是否有交集了…
再用一个setsetset维护一下就可以了…
教训就是…很多时候想要一步解决问题都是不可能的…应当还是从小方面入手,然后分析性质。

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<queue>
#include<vector>
#include<ctime>
#include<map>
#include<bitset>
#include<set>
#define LL long long
#define mp(x,y) make_pair(x,y)
#define pll pair<long long,long long>
#define pii pair<int,int>
using namespace std;
inline int read()
{
	int f=1,x=0;char ch=getchar();
	while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
	while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
	return x*f;
}
int stack[20];
inline void write(int x)
{
	if(x<0){putchar('-');x=-x;}
    if(!x){putchar('0');return;}
    int top=0;
    while(x)stack[++top]=x%10,x/=10;
    while(top)putchar(stack[top--]+'0');
}
inline void pr1(int x){write(x);putchar(' ');}
inline void pr2(int x){write(x);putchar('\n');}
const int MAXN=100005;
set<pii> se;
set<pii>::iterator it;
set<int> se1;
set<int>::iterator it1;
struct line
{
	int x,l,r,o,id;
	line(){}
	line(int _x,int _l,int _r,int _o,int _id){x=_x;l=_l;r=_r;o=_o;id=_id;}
}L[2*MAXN],b[2*MAXN];int ln,ln1;
bool cmp1(line n1,line n2){return n1.x!=n2.x?n1.x<n2.x:n1.o>n2.o;}
struct pt{int x,y,o,id;}w[2*MAXN];
int n,mk[2*MAXN];
bool cmp(pt n1,pt n2){return n1.x!=n2.x?n1.x>n2.x:n1.o>n2.o;}
bool cmp2(line n1,line n2){return n1.l<n2.l;}
bool cmp3(line n1,line n2){return n1.id<n2.id;}
int main()
{
	n=read();
	for(int i=1;i<=n;i++)
	{
		w[i].x=read();w[i].y=read();
		w[i].o=0;w[i].id=i;
	}
	for(int i=1;i<=n;i++)
	{
		w[i+n].x=read();w[i+n].y=read();
		w[i+n].o=1;w[i+n].id=i;
	}
	sort(w+1,w+1+2*n,cmp);
	bool tf=true;
	for(int i=1;i<=2*n;i++)
	{
		if(w[i].o)
		{
			it=se.lower_bound(mp(w[i].y,0));
			if(it!=se.end())
			{
				pii temp=*it;
				if(temp.first==w[i].y){tf=false;break;}
			}
			se.insert(mp(w[i].y,i));
		}
		else
		{
			it=se.lower_bound(mp(w[i].y,0));
			if(it==se.end()){tf=false;break;}
			pii temp=*it;se.erase(it);
			mk[w[i].id]=w[temp.second].id;
			L[++ln]=line(w[i].x,w[i].y,w[temp.second].y,1,w[i].id);
			L[++ln]=line(w[temp.second].x,w[i].y,w[temp.second].y,-1,w[i].id);
		}
	}
	if(!tf)return puts("syntax error"),0;
	sort(L+1,L+1+ln,cmp1);
	for(int i=1,nxt;i<=ln;i=nxt+1)
	{
		nxt=i;
		while(L[nxt+1].x==L[i].x&&nxt<ln)nxt++;
		ln1=0;
		for(int j=i;j<=nxt;j++)b[++ln1]=L[j];
		sort(b+1,b+1+ln1,cmp3);int gg=0;
		for(int j=1;j<=ln1;j++)if(b[j].id!=b[gg].id)b[++gg]=b[j];
		ln1=gg;
		sort(b+1,b+1+ln1,cmp2);
		int mx=0;
		for(int j=1;j<=ln1;j++)
		{
			if(b[j].l<=mx)
			{
				tf=false;break;
			}
			mx=max(mx,b[j].r);
		}
	}
	for(int i=1;i<=ln;i++)
	{
		if(L[i].o==1)
		{
			it1=se1.lower_bound(L[i].l);
			if(it1!=se1.end())
			{
				int x=*it1;
				if(x<=L[i].r){tf=false;break;}
			}
			se1.insert(L[i].l);se1.insert(L[i].r);
		}
		else 
		{
			it1=se1.upper_bound(L[i].l);
			if(it1!=se1.end())
			{
				int x=*it1;
				if(x<L[i].r){tf=false;break;}
			}
			se1.erase(L[i].l),se1.erase(L[i].r);
		}
	}
	if(!tf)return puts("syntax error"),0;
	for(int i=1;i<=n;i++)pr2(mk[i]);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值