∀ ζ η ϑ∈Rm
\forall\ \zeta \ \eta \ \vartheta \in R^m
∀ ζ η ϑ∈Rm
ζ ⊗η ⊗ϑ∈T3(Rm)ζ ⊗η ⊗ϑ(u1,u2,u3)=(ζ∗u1)∗(η∗u2)∗(ϑ∗u3)线性性检查略
\zeta \ \otimes \eta \ \otimes \vartheta \in \mathcal T ^3(R^m)\\
\zeta \ \otimes \eta \ \otimes \vartheta (u_1,u_2,u_3)=(\zeta *u_1)*(\eta *u_2)*(\vartheta *u_3)\\
线性性检查略\\
ζ ⊗η ⊗ϑ∈T3(Rm)ζ ⊗η ⊗ϑ(u1,u2,u3)=(ζ∗u1)∗(η∗u2)∗(ϑ∗u3)线性性检查略
性质ζ ⊗(aηˉ+bη^) ⊗ϑ=aζ ⊗ηˉ ⊗ϑ+bζ ⊗η^ ⊗ϑ证明略 性质 \zeta \ \otimes (a\bar \eta+b\hat\eta) \ \otimes \vartheta= a\zeta \ \otimes \bar\eta \ \otimes \vartheta+ b\zeta \ \otimes \hat\eta \ \otimes \vartheta\\ 证明略\\ 性质ζ ⊗(aηˉ+bη^) ⊗ϑ=aζ ⊗ηˉ ⊗ϑ+bζ ⊗η^ ⊗ϑ证明略
本文探讨了张量积在三维实数空间中的定义,展示了线性性和两个关键性质:线性组合的张量积以及与标量的乘法规则。通过例子和证明,揭示了张量运算在向量和张量代数中的核心特性。
1557

被折叠的 条评论
为什么被折叠?



