代码随想录四刷day14

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


前言


迭代法中我们使用了队列,需要注意的是这不是层序遍历,而且仅仅通过一个容器来成对的存放我们要比较的元素,知道这一本质之后就发现,用队列,用栈,甚至用数组,都是可以的。

一、力扣226. 翻转二叉树

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public TreeNode invertTree(TreeNode root) {
        return preOrder(root);
    }
    public TreeNode preOrder(TreeNode root){
        if(root == null){
            return null;
        }
        TreeNode t = root.left;
        root.left = root.right;
        root.right = t;
        preOrder(root.left);
        preOrder(root.right);
        return root;
    }
}

二、力扣589. N 叉树的前序遍历

/*
// Definition for a Node.
class Node {
    public int val;
    public List<Node> children;

    public Node() {}

    public Node(int _val) {
        val = _val;
    }

    public Node(int _val, List<Node> _children) {
        val = _val;
        children = _children;
    }
};
*/

class Solution {
    List<Integer> res = new ArrayList<>();
    public List<Integer> preorder(Node root) {
        preOrder(root);
        return res;
    }
    public void preOrder(Node root){
        if(root == null){
            return;
        }
        res.add(root.val);
        for(Node node : root.children){
            preOrder(node);
        }
    }
}

迭代

/*
// Definition for a Node.
class Node {
    public int val;
    public List<Node> children;

    public Node() {}

    public Node(int _val) {
        val = _val;
    }

    public Node(int _val, List<Node> _children) {
        val = _val;
        children = _children;
    }
};
*/

class Solution {
    List<Integer> res = new ArrayList<>();
    Deque<Node> deq = new LinkedList<>();
    public List<Integer> preorder(Node root) {
        if(root == null){
            return res;
        }
        deq.offerLast(root);
        while(!deq.isEmpty()){
            Node p = deq.pollLast();
            res.add(p.val);
            for(int i = p.children.size()-1; i >= 0; i --){
                deq.offerLast(p.children.get(i));
            }
        }
        return res;
    }
}

三、力扣590. N 叉树的后序遍历

/*
// Definition for a Node.
class Node {
    public int val;
    public List<Node> children;

    public Node() {}

    public Node(int _val) {
        val = _val;
    }

    public Node(int _val, List<Node> _children) {
        val = _val;
        children = _children;
    }
};
*/

class Solution {
    List<Integer> res = new ArrayList<>();
    public List<Integer> postorder(Node root) {
        fun(root);
        return res;
    }
    public void fun(Node root){
        if(root == null){
            return;
        }
        for(Node node : root.children){
            fun(node);
        }
        res.add(root.val);
    }
}

迭代

/*
// Definition for a Node.
class Node {
    public int val;
    public List<Node> children;

    public Node() {}

    public Node(int _val) {
        val = _val;
    }

    public Node(int _val, List<Node> _children) {
        val = _val;
        children = _children;
    }
};
*/

class Solution {
    List<Integer> res = new ArrayList<>();
    Deque<Node> deq = new LinkedList<>();
    public List<Integer> postorder(Node root) {
        if(root == null){
            return res;
        }
        deq.offerLast(root);
        while(!deq.isEmpty()){
            Node p = deq.pollLast();
            res.add(p.val);
            for(Node node : p.children){
                deq.offerLast(node);
            }
        }
        Collections.reverse(res);
        return res;
    }
    
}

四、力扣101. 对称二叉树

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public boolean isSymmetric(TreeNode root) {
        if(root == null){
            return true;
        }
        return fun(root.left, root.right);
    }
    public boolean fun(TreeNode l, TreeNode r){
        if(l == null && r == null){
            return true;
        }else if(l != null && r != null){
            if(l.val != r.val){
                return false;
            }
            boolean b1 = fun(l.left, r.right);
            boolean b2 = fun(l.right, r.left);
            return b1 && b2;
        }else{
            return false;
        }
    }
}

层序遍历

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public boolean isSymmetric(TreeNode root) {
        if(root == null){
            return true;
        }
        Deque<TreeNode> deq = new LinkedList<>();
        deq.offerLast(root.left);
        deq.offerLast(root.right);
        while(!deq.isEmpty()){
            TreeNode l = deq.pollFirst();
            TreeNode r = deq.pollFirst();
            if(l == null && r == null){
                continue;
            }
            if(l == null && r != null || l != null && r == null){
                return false;
            }
            if(l.val != r.val){
                return false;
            }
            deq.offerLast(l.left);
            deq.offerLast(r.right);
            deq.offerLast(l.right);
            deq.offerLast(r.left);
        }
        return true;
    }
}
### 关于代码随想录 Day04 的学习资料与解析 #### 一、Day04 主要内容概述 代码随想录 Day04 的主要内容围绕 **二叉树的遍历** 展开,包括前序、中序和后序三种遍历方式。这些遍历可以通过递归实现,也可以通过栈的方式进行迭代实现[^1]。 #### 二、二叉树的遍历方法详解 ##### 1. 前序遍历(Pre-order Traversal) 前序遍历遵循访问顺序:根节点 -> 左子树 -> 右子树。以下是基于递归的实现: ```python def preorderTraversal(root): result = [] def traversal(node): if not node: return result.append(node.val) # 访问根节点 traversal(node.left) # 遍历左子树 traversal(node.right) # 遍历右子树 traversal(root) return result ``` 对于迭代版本,则可以利用显式的栈来模拟递归过程: ```python def preorderTraversal_iterative(root): stack, result = [], [] current = root while stack or current: while current: result.append(current.val) # 访问当前节点 stack.append(current) # 将当前节点压入栈 current = current.left # 转向左子树 current = stack.pop() # 弹出栈顶元素 current = current.right # 转向右子树 return result ``` ##### 2. 中序遍历(In-order Traversal) 中序遍历遵循访问顺序:左子树 -> 根节点 -> 右子树。递归实现如下: ```python def inorderTraversal(root): result = [] def traversal(node): if not node: return traversal(node.left) # 遍历左子树 result.append(node.val) # 访问根节点 traversal(node.right) # 遍历右子树 traversal(root) return result ``` 迭代版本同样依赖栈结构: ```python def inorderTraversal_iterative(root): stack, result = [], [] current = root while stack or current: while current: stack.append(current) # 当前节点压入栈 current = current.left # 转向左子树 current = stack.pop() # 弹出栈顶元素 result.append(current.val) # 访问当前节点 current = current.right # 转向右子树 return result ``` ##### 3. 后序遍历(Post-order Traversal) 后序遍历遵循访问顺序:左子树 -> 右子树 -> 根节点。递归实现较为直观: ```python def postorderTraversal(root): result = [] def traversal(node): if not node: return traversal(node.left) # 遍历左子树 traversal(node.right) # 遍历右子树 result.append(node.val) # 访问根节点 traversal(root) return result ``` 而迭代版本则稍复杂一些,通常采用双栈法或标记法完成: ```python def postorderTraversal_iterative(root): if not root: return [] stack, result = [root], [] while stack: current = stack.pop() result.insert(0, current.val) # 插入到结果列表头部 if current.left: stack.append(current.left) # 先压左子树 if current.right: stack.append(current.right) # 再压右子树 return result ``` #### 三、补充知识点 除了上述基本的二叉树遍历外,Day04 还可能涉及其他相关内容,例如卡特兰数的应用场景以及组合问题的基础模板[^2][^4]。如果遇到具体题目,可以根据实际需求调用相应算法工具。 --- ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

乱世在摸鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值