import torch
import torchvision
from torch.utils.tensorboard import SummaryWriter
from model import *
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Linear
from torch.nn.modules.flatten import Flatten
from torch.utils.data import DataLoader
device = torch.device("cuda")
train_data = torchvision.datasets.CIFAR10("../tudui/data", train=True, transform=torchvision.transforms.ToTensor(),
download=True)
test_data = torchvision.datasets.CIFAR10("../tudui/data", train=False, transform=torchvision.transforms.ToTensor(),
download=False)
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集长度为:{}".format(train_data_size))
print("测试数据集长度为:{}".format(test_data_size))
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
tudui = Tudui()
tudui = tudui.to(device)
loss_fn = nn.CrossEntropyLoss()
loss_fn = loss_fn.to(device)
learning_rate = 1e-2
optimizer = torch.optim.SGD(tudui.parameters(), lr=learning_rate)
#设置网络参数
total_train = 0
total_test = 0
epoch = 50
writer = SummaryWriter("logs")
for i in range(epoch):
print("--------------第{}轮训练----------".format(i + 1))
tudui.train()
for data in train_dataloader:
imgs, targets = data
imgs = imgs.to(device)
targets = targets.to(device)
output = tudui(imgs)
loss = loss_fn(output, targets)
#优化模型
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train += 1
if total_train%100 == 0:
print("训练次数:{},loss:{}".format(total_train, loss))
#测试
tudui.eval()
total_test_loss = 0
total_test_step = 0
total_test_accuracy = 0
with torch.no_grad():
for data in test_dataloader:
imgs, targets = data
imgs = imgs.to(device)
targets = targets.to(device)
outputs = tudui(imgs)
loss = loss_fn(outputs, targets)
total_test_loss += loss
accuracy = (outputs.argmax(1) == targets).sum()
total_test_accuracy += accuracy
print("整体测试集上loss:{}".format(total_test_loss))
print("整体测试集上accuracy:{}".format(total_test_accuracy/test_data_size))
writer.add_scalar("test_loss", total_test_loss, total_test_step)
writer.add_scalar("test_accuracy", total_test_accuracy/test_data_size, total_test_step)
total_test_step += 1
torch.save(tudui, "tudui_{}.pth".format(i))
print("模型已保存")
writer.close()
train.py
最新推荐文章于 2025-12-10 18:58:51 发布
部署运行你感兴趣的模型镜像
您可能感兴趣的与本文相关的镜像
PyTorch 2.5
PyTorch
Cuda
PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理
1万+

被折叠的 条评论
为什么被折叠?



