Verhoef对辐射传输模型的四流近似方法

Verhoef Four-stream theory

1. reflectance

The BRDF ρ′\rho'ρ is defined as
dL(Ω)=ρ′(Ω,Ω′)I(Ω′)∣μ′∣dΩ dL(\Omega)=\rho'(\Omega,\Omega')I(\Omega')|\mu'|d\Omega dL(Ω)=ρ(Ω,Ω)I(Ω)μdΩ
For specular incident flux from direction Ω′\Omega'Ω it becomes
I(Ω)=ρ′(Ω′,Ω)E(Ω′) I(\Omega)=\rho'(\Omega',\Omega)E(\Omega') I(Ω)=ρ(Ω,Ω)E(Ω)
For Lambertian target, we have
M=πI M=\pi I M=πI
Here, MMM is exitance. For ideal Lambertian (called White Lambertian reflector in verhoef’s book), M=E=FM=E=FM=E=F, thus the BRDF of this target is
Fπ=ρ′F→ρ′=1π \frac{F}{\pi}=\rho'F \rightarrow\rho'=\frac{1}{\pi} πF=ρFρ=π1
The radiance of arbitraty BRDF is
I(Ω)=∫2π−ρ′(Ω′,Ω)∣μ′∣I(Ω′)dΩ′ I(\Omega)=\int_{2\pi-}\rho'(\Omega',\Omega)|\mu'|I(\Omega')d\Omega' I(Ω)=2πρ(Ω,Ω)μI(Ω)dΩ
The BRF r0r_0r0 is defined as
r0=∫2π−ρ′(Ω′,Ω)∣μ′∣I(Ω′)dΩ′1π∫2π−∣μ′∣I(Ω′)dΩ′ r_0=\frac{\int_{2\pi-}\rho'(\Omega',\Omega)|\mu'|I(\Omega')d\Omega'}{\frac{1}{\pi}\int_{2\pi-}|\mu'|I(\Omega')d\Omega'} r0=π12πμI(Ω)dΩ2πρ(Ω,Ω)μI(Ω)dΩ
So for spexular incident flux, using delta function, it could be writen as
rso=ρ′(Ω′,Ω)∣μ′∣I(Ω′)∣μ′∣I(Ω′)1π=πI0Fs↓=πρ′ r_{so}=\frac{\rho'(\Omega',\Omega)|\mu'|I(\Omega')}{|\mu'|I(\Omega')\frac{1}{\pi}}=\frac{\pi I_0}{F^{\downarrow}_s}=\pi\rho' rso=μI(Ω)π1ρ(Ω,Ω)μI(Ω)=FsπI0=πρ
where Fs↓=∣μ′∣I(Ω′)1πF_s^{\downarrow}=|\mu'|I(\Omega')\frac{1}{\pi}Fs=μI(Ω)π1. And for a isopropic diffuse incident flux, we have
rdo=∫2π−∣μ′∣ρ′(Ω′,Ω)dΩ′1π∫2π−∣μ′∣dΩ′=∫2π−∣μ′∣ρ′(Ω′,Ω)dΩ′=πI0Fd↓ r_{do}=\frac{\int_{2\pi-}|\mu'|\rho'(\Omega',\Omega)d\Omega'}{\frac{1}{\pi}\int_{2\pi-}|\mu'|d\Omega'}=\int_{2\pi-}|\mu'|\rho'(\Omega',\Omega)d\Omega'=\frac{\pi I_0}{F^{\downarrow}_d} rdo=π12πμdΩ2πμρ(Ω,Ω)dΩ=2πμρ(Ω,Ω)dΩ=FdπI0
So using Eq. (7) we have the relationship of rsor_{so}rso and rdor_{do}rdo
rdo=∫2π−∣μ′∣ρ′(Ω′,Ω)dΩ′=1π∫2π−∣μ′∣rsodΩ′ r_{do}=\int_{2\pi-}|\mu'|\rho'(\Omega',\Omega)d\Omega'=\frac{1}{\pi}\int_{2\pi-}|\mu'|r_{so}d\Omega' rdo=2πμρ(Ω,Ω)dΩ=π12πμrsodΩ
BHR (called diffuse reflectance in verhoef’s book) is defined as
rd=∫2π+I∣μ∣dΩF↓ r_d = \frac{\int_{2\pi+}I|\mu|d\Omega}{F^{\downarrow}} rd=F2π+IμdΩ
For specular incident flux rdr_drd becomes rsdr_{sd}rsd, which is
rsd=∫2π+I(Ω′)∣μ′∣ρ′(Ω′,Ω)∣μ∣dΩI(Ω′)∣μ′∣=∫2π+ρ′(Ω′,Ω)∣μ∣dΩ r_{sd}=\frac{\int_{2\pi+}I(\Omega')|\mu'|\rho'(\Omega',\Omega)|\mu|d\Omega}{I(\Omega')|\mu'|}=\int_{2\pi+}\rho'(\Omega',\Omega)|\mu|d\Omega rsd=I(Ω)μ2π+I(Ω)μρ(Ω,Ω)μdΩ=2π+ρ(Ω,Ω)μdΩ
And we connect the Eq. (11) with Eq. (7), we found that
rsd=1π∫2π+rso∣μ∣dΩ r_{sd}=\frac{1}{\pi}\int_{2\pi+}r_{so}|\mu|d\Omega rsd=π12π+rsoμdΩ
For isopropic diffuse incident flux, we could find that BHR is
rdd=∫2π+I(Ω)∣μ∣dΩI=1π∫2π+∫2π−I(Ω′)ρ(Ω′,Ω)∣μ′∣dΩ′∣μ∣dΩI=1π∫2π+∫2π−ρ(Ω′,Ω)∣μ′∣dΩ′∣μ∣dΩ \begin{aligned} r_{dd}&=\frac{\int_{2\pi+}I(\Omega)|\mu|d\Omega}{I}\\&=\frac{\frac{1}{\pi}\int_{2\pi+}\int_{2\pi-}I(\Omega')\rho(\Omega',\Omega)|\mu'|d\Omega'|\mu|d\Omega}{I}\\ &=\frac{1}{\pi}\int_{2\pi+}\int_{2\pi-}\rho(\Omega',\Omega)|\mu'|d\Omega'|\mu|d\Omega \end{aligned} rdd=I2π+I(Ω)μdΩ=Iπ12π+2πI(Ω)ρ(Ω,Ω)μdΩμdΩ=π12π+2πρ(Ω,Ω)μdΩμdΩ
If the incident flux is composed of a specular part FsF_sFs and a diffuse part FdF_{d}Fd, then the radiance III of the surface with direction Ω\OmegaΩ is
πI(Ω)=rsoFs+rdoFd \pi I(\Omega)=r_{so}F_s+r_{do}F_d πI(Ω)=rsoFs+rdoFd

and we also have the approximation that
F↑=rsdFs+rddF↓ F^{\uparrow}=r_{sd}F_s+r_{dd}F^{\downarrow} F=rsdFs+rddF
The Eq. (14) and Eq.(15) constitute the four-stream representation of reflectance of a surface.

Transmittance

Define the bidirectional transmittance distribution function (BTDF) as
dI(Ω)=τ′(Ω′,Ω)I(Ω′)∣μ′∣dΩ dI(\Omega)=\tau'(\Omega',\Omega)I(\Omega')|\mu'|d\Omega dI(Ω)=τ(Ω,Ω)I(Ω)μdΩ
So τ′\tau'τ is very similar to BRDF, only different is Ω′\Omega'Ω and Ω\OmegaΩ are in opposite hemishpheres. With similar defination of reflectance characters, we have
τso(Ω′,Ω)=πτ′(Ω′,Ω)τdo(Ω)=∫2π+τ′(Ω′,Ω)∣μ′∣dΩ′τsd=∫2π−τ′(Ω′,Ω)∣μ∣dΩτdd=1π∫2π−τdo∣μ∣dΩ \begin{aligned} &\tau_{so}(\Omega',\Omega)=\pi\tau'(\Omega',\Omega)\\ &\tau_{do}(\Omega)=\int_{2\pi+}\tau'(\Omega',\Omega)|\mu'|d\Omega'\\ &\tau_{sd}=\int_{2\pi-}\tau'(\Omega',\Omega)|\mu|d\Omega\\ &\tau_{dd}=\frac{1}{\pi}\int_{2\pi-}\tau_{do}|\mu|d\Omega \end{aligned} τso(Ω,Ω)=πτ(Ω,Ω)τdo(Ω)=2π+τ(Ω,Ω)μdΩτsd=2πτ(Ω,Ω)μdΩτdd=π12πτdoμdΩ
They are direct-in-out, diffuse-in-direct-out, direct-in-diffuse-out, and diffuse-in-out transmittance. And if Ω′=Ω\Omega'=\OmegaΩ=Ω, then the transmittance is called direct transmittance, for specular flux this is called τss\tau_{ss}τss and for obervation direction this is called τoo\tau_{oo}τoo.

Four-Stream interaction with layers and surfaces

Now, we use EEE for flux density (or irradiance). The four-stream radiative transfer equations for a layer is
Es(b)=τssEs(t),E−(b)=τsdEs(t)+τddE−(t)+ρddE+(b),E+(b)=ρsdEs(t)+ρddE−(t)+τddE+(b),πIo+(t)=ρsoEs(t)+ρdoE−t)+τdoE+(b)+τooπIo+(b),πIo−(t)=τsoEs(t)+τdoE−t)+ρdoE+(b)+τooπIo−(b). \begin{aligned} & E_s(b)=\tau_{ss}E_s(t),\\ & E^-(b)=\tau_{sd}E_s(t)+\tau_{dd}E^-(t)+\rho_{dd}E^+(b),\\ & E^+(b)=\rho_{sd}E_s(t)+\rho_{dd}E^-(t)+\tau_{dd}E^+(b),\\ & \pi I_o^+(t)=\rho_{so}E_s(t)+\rho_{do}E^-t)+\tau_{do}E^+(b)+\tau_{oo}\pi I_o^+(b),\\ & \pi I_o^-(t)=\tau_{so}E_s(t)+\tau_{do}E^-t)+\rho_{do}E^+(b)+\tau_{oo}\pi I_o^-(b).\\ \end{aligned} Es(b)=τssEs(t),E(b)=τsdEs(t)+τddE(t)+ρddE+(b),E+(b)=ρsdEs(t)+ρddE(t)+τddE+(b),πIo+(t)=ρsoEs(t)+ρdoEt)+τdoE+(b)+τooπIo+(b),πIo(t)=τsoEs(t)+τdoEt)+ρdoE+(b)+τooπIo(b).
So it is easy to understand these equations, the only hard place is the last two equations, the factor π\piπ looks strange. For this, we could divide the π\piπ from both sides, then we find that the BRDFs or BRTF all become the BRF (BTF), so it looks better.

Then, the interaction with a surface is
E+(b)=rsdEs(b)+rddE−(b)πI0+=rsoEs(b)+rdoE−(b) \begin{aligned} &E^+(b) = r_{sd}E_s(b)+r_{dd}E^-(b)\\ & \pi I_0^+ = r_{so}E_s(b)+r_{do}E^-(b) \end{aligned} E+(b)=rsdEs(b)+rddE(b)πI0+=rsoEs(b)+rdoE(b)
Then Eq. (20) and (21) discribe a surface and a layer beyund it. This process is discribed as the following figure:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值