Verhoef Four-stream theory
1. reflectance
The BRDF ρ′\rho'ρ′ is defined as
dL(Ω)=ρ′(Ω,Ω′)I(Ω′)∣μ′∣dΩ
dL(\Omega)=\rho'(\Omega,\Omega')I(\Omega')|\mu'|d\Omega
dL(Ω)=ρ′(Ω,Ω′)I(Ω′)∣μ′∣dΩ
For specular incident flux from direction Ω′\Omega'Ω′ it becomes
I(Ω)=ρ′(Ω′,Ω)E(Ω′)
I(\Omega)=\rho'(\Omega',\Omega)E(\Omega')
I(Ω)=ρ′(Ω′,Ω)E(Ω′)
For Lambertian target, we have
M=πI
M=\pi I
M=πI
Here, MMM is exitance. For ideal Lambertian (called White Lambertian reflector in verhoef’s book), M=E=FM=E=FM=E=F, thus the BRDF of this target is
Fπ=ρ′F→ρ′=1π
\frac{F}{\pi}=\rho'F \rightarrow\rho'=\frac{1}{\pi}
πF=ρ′F→ρ′=π1
The radiance of arbitraty BRDF is
I(Ω)=∫2π−ρ′(Ω′,Ω)∣μ′∣I(Ω′)dΩ′
I(\Omega)=\int_{2\pi-}\rho'(\Omega',\Omega)|\mu'|I(\Omega')d\Omega'
I(Ω)=∫2π−ρ′(Ω′,Ω)∣μ′∣I(Ω′)dΩ′
The BRF r0r_0r0 is defined as
r0=∫2π−ρ′(Ω′,Ω)∣μ′∣I(Ω′)dΩ′1π∫2π−∣μ′∣I(Ω′)dΩ′
r_0=\frac{\int_{2\pi-}\rho'(\Omega',\Omega)|\mu'|I(\Omega')d\Omega'}{\frac{1}{\pi}\int_{2\pi-}|\mu'|I(\Omega')d\Omega'}
r0=π1∫2π−∣μ′∣I(Ω′)dΩ′∫2π−ρ′(Ω′,Ω)∣μ′∣I(Ω′)dΩ′
So for spexular incident flux, using delta function, it could be writen as
rso=ρ′(Ω′,Ω)∣μ′∣I(Ω′)∣μ′∣I(Ω′)1π=πI0Fs↓=πρ′
r_{so}=\frac{\rho'(\Omega',\Omega)|\mu'|I(\Omega')}{|\mu'|I(\Omega')\frac{1}{\pi}}=\frac{\pi I_0}{F^{\downarrow}_s}=\pi\rho'
rso=∣μ′∣I(Ω′)π1ρ′(Ω′,Ω)∣μ′∣I(Ω′)=Fs↓πI0=πρ′
where Fs↓=∣μ′∣I(Ω′)1πF_s^{\downarrow}=|\mu'|I(\Omega')\frac{1}{\pi}Fs↓=∣μ′∣I(Ω′)π1. And for a isopropic diffuse incident flux, we have
rdo=∫2π−∣μ′∣ρ′(Ω′,Ω)dΩ′1π∫2π−∣μ′∣dΩ′=∫2π−∣μ′∣ρ′(Ω′,Ω)dΩ′=πI0Fd↓
r_{do}=\frac{\int_{2\pi-}|\mu'|\rho'(\Omega',\Omega)d\Omega'}{\frac{1}{\pi}\int_{2\pi-}|\mu'|d\Omega'}=\int_{2\pi-}|\mu'|\rho'(\Omega',\Omega)d\Omega'=\frac{\pi I_0}{F^{\downarrow}_d}
rdo=π1∫2π−∣μ′∣dΩ′∫2π−∣μ′∣ρ′(Ω′,Ω)dΩ′=∫2π−∣μ′∣ρ′(Ω′,Ω)dΩ′=Fd↓πI0
So using Eq. (7) we have the relationship of rsor_{so}rso and rdor_{do}rdo
rdo=∫2π−∣μ′∣ρ′(Ω′,Ω)dΩ′=1π∫2π−∣μ′∣rsodΩ′
r_{do}=\int_{2\pi-}|\mu'|\rho'(\Omega',\Omega)d\Omega'=\frac{1}{\pi}\int_{2\pi-}|\mu'|r_{so}d\Omega'
rdo=∫2π−∣μ′∣ρ′(Ω′,Ω)dΩ′=π1∫2π−∣μ′∣rsodΩ′
BHR (called diffuse reflectance in verhoef’s book) is defined as
rd=∫2π+I∣μ∣dΩF↓
r_d = \frac{\int_{2\pi+}I|\mu|d\Omega}{F^{\downarrow}}
rd=F↓∫2π+I∣μ∣dΩ
For specular incident flux rdr_drd becomes rsdr_{sd}rsd, which is
rsd=∫2π+I(Ω′)∣μ′∣ρ′(Ω′,Ω)∣μ∣dΩI(Ω′)∣μ′∣=∫2π+ρ′(Ω′,Ω)∣μ∣dΩ
r_{sd}=\frac{\int_{2\pi+}I(\Omega')|\mu'|\rho'(\Omega',\Omega)|\mu|d\Omega}{I(\Omega')|\mu'|}=\int_{2\pi+}\rho'(\Omega',\Omega)|\mu|d\Omega
rsd=I(Ω′)∣μ′∣∫2π+I(Ω′)∣μ′∣ρ′(Ω′,Ω)∣μ∣dΩ=∫2π+ρ′(Ω′,Ω)∣μ∣dΩ
And we connect the Eq. (11) with Eq. (7), we found that
rsd=1π∫2π+rso∣μ∣dΩ
r_{sd}=\frac{1}{\pi}\int_{2\pi+}r_{so}|\mu|d\Omega
rsd=π1∫2π+rso∣μ∣dΩ
For isopropic diffuse incident flux, we could find that BHR is
rdd=∫2π+I(Ω)∣μ∣dΩI=1π∫2π+∫2π−I(Ω′)ρ(Ω′,Ω)∣μ′∣dΩ′∣μ∣dΩI=1π∫2π+∫2π−ρ(Ω′,Ω)∣μ′∣dΩ′∣μ∣dΩ
\begin{aligned}
r_{dd}&=\frac{\int_{2\pi+}I(\Omega)|\mu|d\Omega}{I}\\&=\frac{\frac{1}{\pi}\int_{2\pi+}\int_{2\pi-}I(\Omega')\rho(\Omega',\Omega)|\mu'|d\Omega'|\mu|d\Omega}{I}\\
&=\frac{1}{\pi}\int_{2\pi+}\int_{2\pi-}\rho(\Omega',\Omega)|\mu'|d\Omega'|\mu|d\Omega
\end{aligned}
rdd=I∫2π+I(Ω)∣μ∣dΩ=Iπ1∫2π+∫2π−I(Ω′)ρ(Ω′,Ω)∣μ′∣dΩ′∣μ∣dΩ=π1∫2π+∫2π−ρ(Ω′,Ω)∣μ′∣dΩ′∣μ∣dΩ
If the incident flux is composed of a specular part FsF_sFs and a diffuse part FdF_{d}Fd, then the radiance III of the surface with direction Ω\OmegaΩ is
πI(Ω)=rsoFs+rdoFd
\pi I(\Omega)=r_{so}F_s+r_{do}F_d
πI(Ω)=rsoFs+rdoFd
and we also have the approximation that
F↑=rsdFs+rddF↓
F^{\uparrow}=r_{sd}F_s+r_{dd}F^{\downarrow}
F↑=rsdFs+rddF↓
The Eq. (14) and Eq.(15) constitute the four-stream representation of reflectance of a surface.
Transmittance
Define the bidirectional transmittance distribution function (BTDF) as
dI(Ω)=τ′(Ω′,Ω)I(Ω′)∣μ′∣dΩ
dI(\Omega)=\tau'(\Omega',\Omega)I(\Omega')|\mu'|d\Omega
dI(Ω)=τ′(Ω′,Ω)I(Ω′)∣μ′∣dΩ
So τ′\tau'τ′ is very similar to BRDF, only different is Ω′\Omega'Ω′ and Ω\OmegaΩ are in opposite hemishpheres. With similar defination of reflectance characters, we have
τso(Ω′,Ω)=πτ′(Ω′,Ω)τdo(Ω)=∫2π+τ′(Ω′,Ω)∣μ′∣dΩ′τsd=∫2π−τ′(Ω′,Ω)∣μ∣dΩτdd=1π∫2π−τdo∣μ∣dΩ
\begin{aligned}
&\tau_{so}(\Omega',\Omega)=\pi\tau'(\Omega',\Omega)\\
&\tau_{do}(\Omega)=\int_{2\pi+}\tau'(\Omega',\Omega)|\mu'|d\Omega'\\
&\tau_{sd}=\int_{2\pi-}\tau'(\Omega',\Omega)|\mu|d\Omega\\
&\tau_{dd}=\frac{1}{\pi}\int_{2\pi-}\tau_{do}|\mu|d\Omega
\end{aligned}
τso(Ω′,Ω)=πτ′(Ω′,Ω)τdo(Ω)=∫2π+τ′(Ω′,Ω)∣μ′∣dΩ′τsd=∫2π−τ′(Ω′,Ω)∣μ∣dΩτdd=π1∫2π−τdo∣μ∣dΩ
They are direct-in-out, diffuse-in-direct-out, direct-in-diffuse-out, and diffuse-in-out transmittance. And if Ω′=Ω\Omega'=\OmegaΩ′=Ω, then the transmittance is called direct transmittance, for specular flux this is called τss\tau_{ss}τss and for obervation direction this is called τoo\tau_{oo}τoo.
Four-Stream interaction with layers and surfaces
Now, we use EEE for flux density (or irradiance). The four-stream radiative transfer equations for a layer is
Es(b)=τssEs(t),E−(b)=τsdEs(t)+τddE−(t)+ρddE+(b),E+(b)=ρsdEs(t)+ρddE−(t)+τddE+(b),πIo+(t)=ρsoEs(t)+ρdoE−t)+τdoE+(b)+τooπIo+(b),πIo−(t)=τsoEs(t)+τdoE−t)+ρdoE+(b)+τooπIo−(b).
\begin{aligned}
& E_s(b)=\tau_{ss}E_s(t),\\
& E^-(b)=\tau_{sd}E_s(t)+\tau_{dd}E^-(t)+\rho_{dd}E^+(b),\\
& E^+(b)=\rho_{sd}E_s(t)+\rho_{dd}E^-(t)+\tau_{dd}E^+(b),\\
& \pi I_o^+(t)=\rho_{so}E_s(t)+\rho_{do}E^-t)+\tau_{do}E^+(b)+\tau_{oo}\pi I_o^+(b),\\
& \pi I_o^-(t)=\tau_{so}E_s(t)+\tau_{do}E^-t)+\rho_{do}E^+(b)+\tau_{oo}\pi I_o^-(b).\\
\end{aligned}
Es(b)=τssEs(t),E−(b)=τsdEs(t)+τddE−(t)+ρddE+(b),E+(b)=ρsdEs(t)+ρddE−(t)+τddE+(b),πIo+(t)=ρsoEs(t)+ρdoE−t)+τdoE+(b)+τooπIo+(b),πIo−(t)=τsoEs(t)+τdoE−t)+ρdoE+(b)+τooπIo−(b).
So it is easy to understand these equations, the only hard place is the last two equations, the factor π\piπ looks strange. For this, we could divide the π\piπ from both sides, then we find that the BRDFs or BRTF all become the BRF (BTF), so it looks better.
Then, the interaction with a surface is
E+(b)=rsdEs(b)+rddE−(b)πI0+=rsoEs(b)+rdoE−(b)
\begin{aligned}
&E^+(b) = r_{sd}E_s(b)+r_{dd}E^-(b)\\
& \pi I_0^+ = r_{so}E_s(b)+r_{do}E^-(b)
\end{aligned}
E+(b)=rsdEs(b)+rddE−(b)πI0+=rsoEs(b)+rdoE−(b)
Then Eq. (20) and (21) discribe a surface and a layer beyund it. This process is discribed as the following figure: