(CodeForces 883A) The Meaningless Game 纯正的数学思维题(有点卡cin时间)

本文介绍了一个有趣的游戏得分验证算法,该算法通过判断给定的两个分数是否可以通过特定的游戏规则达到,利用数学方法进行验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

              **A. The Meaningless Game**
          time limit per test: 1 second
          memory limit per test:256 megabytes
          input: standard input
          output: standard output

Slastyona and her loyal dog Pushok are playing a meaningless game that is indeed very interesting.

The game consists of multiple rounds. Its rules are very simple: in each round, a natural number k is chosen. Then, the one who says (or barks) it faster than the other wins the round. After that, the winner’s score is multiplied by k2, and the loser’s score is multiplied by k. In the beginning of the game, both Slastyona and Pushok have scores equal to one.

Unfortunately, Slastyona had lost her notepad where the history of all n games was recorded. She managed to recall the final results for each games, though, but all of her memories of them are vague. Help Slastyona verify their correctness, or, to put it another way, for each given pair of scores determine whether it was possible for a game to finish with such result or not.

Input
In the first string, the number of games n (1 ≤ n ≤ 350000) is given.

Each game is represented by a pair of scores a, b (1 ≤ a, b ≤ 109) – the results of Slastyona and Pushok, correspondingly.

Output
For each pair of scores, answer “Yes” if it’s possible for a game to finish with given score, and “No” otherwise.

You can output each letter in arbitrary case (upper or lower).

Example
input
6
2 4
75 45
8 8
16 16
247 994
1000000000 1000000
output
Yes
Yes
Yes
No
No
Yes
Note

First game might have been consisted of one round, in which the number 2 would have been chosen and Pushok would have won.

The second game needs exactly two rounds to finish with such result: in the first one, Slastyona would have said the number 5, and in the second one, Pushok would have barked the number 3.

**题意**
有n(1<=n<=350000)场游戏,对于每场游戏有若干个回合组成,两个人的初始分均为1,每个回合赢的人当前分数乘上k^2,输的人当前分数乘上k(每一回合的k都是不同的)。给你两个数a,b(1<=a,b<=10^9)问你这两个数是否为他们最终的分数?
**思路:**
我们先计算a*b,那么考虑a*b=(k_1^3)*(k_2^3)*...*(k_i^3),即a*b为立方数的乘积组成,我们可以二分找出满足a*b=mid^3,我们判断mid是否等于k_1*k_2*...*k_i。
当且仅当存在a*b=mid^3,a%mid=0,b%mid=0,那么a,b就为他们最终的分数,反之不是。

AC代码(其中用到了一个四舍五入函数 round()):

#include <stdio.h>
#include <string.h>
#include <math.h>

int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        long long a,b;
        long long c;
        scanf("%lld%lld",&a,&b);//这个地方总感觉在卡cin这点时间 第12组怎样都过不了
        c=round((double)pow(a*b,1.0/3));  //求那个mid 运用了四舍五入函数
        if(c*c*c==a*b&&a%c==0&&b%c==0)
            printf("Yes\n");
        else
            printf("No\n");
    }
    return 0;
}

**在下面简单的介绍一下几个关于四舍五入和取整的函数
ceil(x)返回不小于x的最小整数值(然后转换为double型)
floor(x)返回不大于x的最大整数值。
round(x)返回x的四舍五入整数值。**
### Codeforces 思维思路和技巧 #### 预处理的重要性 对于许多竞赛编程问而言,预处理能够显著提高效率并简化后续操作。通过提前计算某些固定的数据结构或模式匹配表,可以在实际求解过程中节省大量时间。例如,在字符串处理类目中预先构建哈希表来加速查找过程[^1]。 #### 算法优化策略 针对特定类型的输入数据设计高效的解决方案至关重要。当面对大规模测试案例时,简单的暴力破解往往无法满足时限要求;此时则需考虑更高级别的算法改进措施,比如动态规划、贪心算法或是图论中的最短路径算法等。此外,合理利用空间换取时间也是一种常见的优化手段[^2]。 #### STL库的应用价值 C++标准模板库提供了丰富的容器类型(vector, deque)、关联式容器(set,map)以及各种迭代器支持,极大地便利了程序开发工作。熟练掌握这些工具不仅有助于快速实现功能模块,还能有效减少代码量从而降低出错几率。特别是在涉及频繁插入删除场景下,优先选用双向队列deque而非单向链表list可获得更好的性能表现。 ```cpp #include <iostream> #include <deque> using namespace std; int main(){ deque<int> dq; // 向两端添加元素 dq.push_back(5); dq.push_front(3); cout << "Front element is: " << dq.front() << endl; cout << "Back element is : " << dq.back() << endl; return 0; } ``` #### 实际应用实例分析 以一道具体目为例:给定一系列查询指令,分别表示往左端/右端插入数值或者是询问某个指定位置到边界之间的最小距离。此目的关键在于如何高效地追踪最新状态而无需重复更新整个数组。采用双指针技术配合静态分配的一维数组即可轻松解决上述需求,同时保证O(n)级别的总运行成本[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值