codeforces The Meaningless Game 数学思维

本文介绍了一种算法,用于验证两个玩家在游戏中获得的特定得分组合是否可能实现。通过数学方法判断给定得分是否符合游戏规则,即一个玩家得分乘以k而另一个玩家得分乘以k²的条件下,最终得到的有效得分组合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Slastyona and her loyal dog Pushok are playing a meaningless game that is indeed very interesting.

The game consists of multiple rounds. Its rules are very simple: in each round, a natural number k is chosen. Then, the one who says (or barks) it faster than the other wins the round. After that, the winner’s score is multiplied by k2, and the loser’s score is multiplied by k. In the beginning of the game, both Slastyona and Pushok have scores equal to one.

Unfortunately, Slastyona had lost her notepad where the history of all n games was recorded. She managed to recall the final results for each games, though, but all of her memories of them are vague. Help Slastyona verify their correctness, or, to put it another way, for each given pair of scores determine whether it was possible for a game to finish with such result or not.

Input
In the first string, the number of games n (1 ≤ n ≤ 350000) is given.

Each game is represented by a pair of scores a, b (1 ≤ a, b ≤ 109) – the results of Slastyona and Pushok, correspondingly.

Output
For each pair of scores, answer “Yes” if it’s possible for a game to finish with given score, and “No” otherwise.

You can output each letter in arbitrary case (upper or lower).

Example
input
6
2 4
75 45
8 8
16 16
247 994
1000000000 1000000
output
Yes
Yes
Yes
No
No
Yes
Note
First game might have been consisted of one round, in which the number 2 would have been chosen and Pushok would have won.

The second game needs exactly two rounds to finish with such result: in the first one, Slastyona would have said the number 5, and in the second one, Pushok would have barked the number 3.

给你两个数a,b 都是 从1开始的 可以选择一个 *k 另一个*k^2, 问你a b分数可以达到吗,
因为任意一个数都是 *k 和*k*k 所以每次总增加都是 *k^3,所以总的结果其实相当于 i^3
输入a,b, 假设得出的结论由四个自然数形成, 则结果大致为 a= (k1^2) k2(k3^2)k4 和b= k1(k2^2)k3(k4^2) 这样的形式。 当两个数相乘结果为 (k1^3)(k2^3)(k3^3)*(k4^3)。 可以对该数求出其三次方根 temp = k1*k2*k3*k4. 则 有 x=a/temp= k1*k3, y=b/temp= k2*k3; 如果有x*x*y==a&&y*y*x==b 则可以判断答案是否正确。

#include <bits/stdc++.h>

using namespace std;
const int N = 1e6+10;
map<long long,int> mp;
int main()
{

    for(int i=1;i<N;i++)
        mp[1LL*i*i*i]=i;
    int t;
   scanf("%d",&t);
   cout<<cbrt(16*16)<<endl;

    while(t--)
    {
    long long a,b;
    scanf("%lld%lld",&a,&b);
    if((mp[a*b]!=0)&&(a%mp[a*b]==0)&&(b%mp[a*b]==0)){//判断k1 k2 k3 k4 
    //是否存在
        printf("Yes\n" );
    }
    else printf("No\n");
    }
}
### Codeforces 思维题解题思路和技巧 #### 预处理的重要性 对于许多竞赛编程问题而言,预处理能够显著提高效率并简化后续操作。通过提前计算某些固定的数据结构或模式匹配表,可以在实际求解过程中节省大量时间。例如,在字符串处理类题目中预先构建哈希表来加速查找过程[^1]。 #### 算法优化策略 针对特定类型的输入数据设计高效的解决方案至关重要。当面对大规模测试案例时,简单的暴力破解往往无法满足时限要求;此时则需考虑更高级别的算法改进措施,比如动态规划、贪心算法或是图论中的最短路径算法等。此外,合理利用空间换取时间也是一种常见的优化手段[^2]。 #### STL库的应用价值 C++标准模板库提供了丰富的容器类型(vector, deque)、关联式容器(set,map)以及各种迭代器支持,极大地便利了程序开发工作。熟练掌握这些工具不仅有助于快速实现功能模块,还能有效减少代码量从而降低出错几率。特别是在涉及频繁插入删除场景下,优先选用双向队列deque而非单向链表list可获得更好的性能表现。 ```cpp #include <iostream> #include <deque> using namespace std; int main(){ deque<int> dq; // 向两端添加元素 dq.push_back(5); dq.push_front(3); cout << "Front element is: " << dq.front() << endl; cout << "Back element is : " << dq.back() << endl; return 0; } ``` #### 实际应用实例分析 以一道具体题目为例:给定一系列查询指令,分别表示往左端/右端插入数值或者是询问某个指定位置到边界之间的最小距离。此题目的关键在于如何高效地追踪最新状态而无需重复更新整个数组。采用双指针技术配合静态分配的一维数组即可轻松解决上述需求,同时保证O(n)级别的总运行成本[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值