这里不说什么泰勒中值定理,什么佩亚诺余项还是拉格朗日余项,直接写出通用公式:
f(x)=f(x0)+f′(x0)(x−x0)+f′′(x0)2!(x−x0)2+⋅⋅⋅+f(n)(x0)n!(x−x0)n+Rn(x)
f(x) = f(x_0) + f'(x_0)(x-x_0) +
\frac{f''(x_0)}{2!}(x-x_0)^2 + \cdot\cdot\cdot +
\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n + R_n(x)
f(x)=f(x0)+f′(x0)(x−x0)+2!f′′(x0)(x−x0)2+⋅⋅⋅+n!f(n)(x0)(x−x0)n+Rn(x)
麦克劳林公式,即:x0=0x_0 = 0x0=0,带有佩亚诺余项的麦克劳林公式:
f(x)=f(0)+f′(0)x−+f′′(0)2!x2+⋅⋅⋅+f(n)(0)n!xn+o(xn)
f(x) = f(0) + f'(0)x- +
\frac{f''(0)}{2!}x^2 + \cdot\cdot\cdot +
\frac{f^{(n)}(0)}{n!}x^n + o(x^n)
f(x)=f(0)+f′(0)x−+2!f′′(0)x2+⋅⋅⋅+n!f(n)(0)xn+o(xn)
常用泰勒展开(麦克劳林公式)
ex≈1+x+x22!+⋅⋅⋅+xnn!sinx≈x−x33!+x55!+⋅⋅⋅+(−1)n−1x2n−1(2n−1)!cosx≈1−x22!+x44!−⋅⋅⋅+(−1)nx2n(2n)!ln(1+x)≈x−x22+x33−⋅⋅⋅+(−1)n−1xnn(1+x)α≈1+αx+α(α−1)2!x2+⋅⋅⋅+α(α−1)⋅⋅⋅(α−n+1)n!xn \begin{aligned} e^x &\approx 1+x+\frac{x^2}{2!}+···+\frac{x^n}{n!}\\ \\ sinx &\approx x-\frac{x^3}{3!}+\frac{x^5}{5!}+···+(-1)^{n-1}\frac{x^{2n-1}}{(2n-1)!}\\ \\ cosx &\approx 1-\frac{x^2}{2!}+\frac{x^4}{4!}-···+(-1)^n\frac{x^{2n}}{(2n)!}\\ \\ ln(1+x) &\approx x-\frac{x^2}{2}+\frac{x^3}{3}-···+(-1)^{n-1}\frac{x^n}{n}\\ \\ (1+x)^\alpha &\approx 1+\alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 +···+\frac{\alpha(\alpha-1)···(\alpha-n+1)}{n!}x^n \end{aligned} exsinxcosxln(1+x)(1+x)α≈1+x+2!x2+⋅⋅⋅+n!xn≈x−3!x3+5!x5+⋅⋅⋅+(−1)n−1(2n−1)!x2n−1≈1−2!x2+4!x4−⋅⋅⋅+(−1)n(2n)!x2n≈x−2x2+3x3−⋅⋅⋅+(−1)n−1nxn≈1+αx+2!α(α−1)x2+⋅⋅⋅+n!α(α−1)⋅⋅⋅(α−n+1)xn