BZOJ 2565 最长双回文串 Hash+二分

该博客主要介绍了一道BZOJ题目,要求求解字符串中最长的可以分为两个回文子串的子串。作者由于忘记了Manacher算法,选择了使用Hash和二分查找的方法来解决。首先通过倍增分隔符计算每个位置的最长回文半径,然后找到两个回文串有交点的最左侧起点,以实现合并。这个问题中,回文串的合并长度等于两点间的距离的两倍。解决方案涉及后缀最小值的维护技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目大意:给定一个字符串,求一个最长的子串,该字串可以分解为两个回文子串

傻逼的我又忘了Manacher怎么写了= = 无奈Hash+二分吧

首先将字符串用分隔符倍增,然后求出以每个点为中心的最长回文半径

然后考虑两个回文串怎么合并成一个


我们发现图中以i为中心的回文串和以j为中心的回文串合并后长度恰好为(j-i)*2

能合并的前提是以两个点为中心的回文串有交点

那么对于每个j我们要求出有交点的最左侧的i

维护一个后缀min随便搞搞就可以了

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define M 200200
#define BASE 131
using namespace std;
typedef unsigned long long ll;
int n,ans;
int f[M],min_pos[M];
char s[M];
ll hash1[M],hash2[M],power[M];
bool Judge(int mid,int len)
{
	ll _hash1=hash1[mid+len-1]-hash1[mid-1]*power[len];
	ll _hash2=hash2[mid-len+1]-hash2[mid+1]*power[len];
	return _hash1==_hash2;
}
int Bisecition(int x)
{
	int l=1,r=min(x,n-x+1);
	while(l+1<r)
	{
		int mid=l+r>>1;
		if( Judge(x,mid) )
			l=mid;
		else
			r=mid;
	}
	return Judge(x,r)?r:l;
}
int main()
{
	int i;

	static char str[M];
	scanf("%s",str+1);
	for(s[1]='#',i=1;str[i];i++)
		s[i<<1]=str[i],s[i<<1|1]='#';
	n=strlen(s+1);

	for(power[0]=1,i=1;i<=n;i++)
		power[i]=power[i-1]*BASE;
	for(i=1;i<=n;i++)
		hash1[i]=hash1[i-1]*BASE+s[i];
	for(i=n;i;i--)
		hash2[i]=hash2[i+1]*BASE+s[i];

	memset(min_pos,0x3f,sizeof min_pos);
	for(i=1;i<=n;i++)
	{
		f[i]=Bisecition(i);
		min_pos[i+f[i]-1]=min(min_pos[i+f[i]-1],i);
	}
	for(i=n-1;i;i--)
		min_pos[i]=min(min_pos[i],min_pos[i+1]);
	for(i=1;i<=n;i++)
	{
		int temp=min_pos[i-f[i]+1];
		ans=max(ans,i-temp<<1);
	}
	cout<<(ans>>1)<<endl;
	return 0;
}


### BZOJ1461 字符串匹配 题解 针对BZOJ1461字符串匹配问题,解决方法涉及到了KMP算法以及树状数组的应用。对于此类问题,朴素的算法无法满足时间效率的要求,因为其复杂度可能高达O(ML²),其中M代表模式的数量,L为平均长度[^2]。 为了提高效率,在这个问题中采用了更先进的技术组合——即利用KMP算法来预处理模式,并通过构建失配树(也称为失败指针),使得可以在主上高效地滑动窗口并检测多个模式的存在情况。具体来说: - **前缀函数与KMP准备阶段**:先对每一个给定的模式执行一次KMP算法中的pre_kmp操作,得到各个模式对应的next数组。 - **建立失配树结构**:基于所有模式共同构成的一棵Trie树基础上进一步扩展成带有失配链接指向的AC自动机形式;当遇到某个节点不存在对应字符转移路径时,则沿用该处失配链路直至找到合适的目标或者回到根部重新开始尝试其他分支。 - **查询过程**:遍历整个待查本序列的同时维护当前状态处于哪一层级下的哪个子结点之中,每当成功匹配到完整的单词就更新计数值至相应位置上的f_i变量里去记录下这一事实。 下面是简化版Python代码片段用于说明上述逻辑框架: ```python from collections import defaultdict def build_ac_automaton(patterns): trie = {} fail = [None]*len(patterns) # 构建 Trie 树 for i,pattern in enumerate(patterns): node = trie for char in pattern: if char not in node: node[char]={} node=node[char] node['#']=i queue=[trie] while queue: current=queue.pop() for key,value in list(current.items()): if isinstance(value,int):continue if key=='#': continue parent=current[key] p=fail[current is trie and 0 or id(current)] while True: next_p=p and p.get(key,None) if next_p:break elif p==0: value['fail']=trie break else:p=fail[id(p)] if 'fail'not in value:value['fail']=next_p queue.append(parent) return trie,fail def solve(text, patterns): n=len(text) m=len(patterns) f=[defaultdict(int)for _in range(n)] ac_trie,_=build_ac_automaton(patterns) state=ac_trie for idx,char in enumerate(text+'$',start=-1): while True: trans=state.get(char,state.get('#',{}).get('fail')) if trans!=None: state=trans break elif '#'in state: state[state['#']['fail']] else: state=ac_trie cur_state=state while cur_state!={}and'#'in cur_state: matched_pattern_idx=cur_state['#'] f[idx][matched_pattern_idx]+=1 cur_state=cur_state['fail'] result=[] for i in range(len(f)-1): row=list(f[i].values()) if any(row): result.extend([sum((row[:j+1]))for j,x in enumerate(row[::-1])if x>0]) return sum(result) patterns=["ab","bc"] text="abc" print(solve(text,text)) #[^4] ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值