Description
Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1 <= i, j <= N).
We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using “not” operation (if it is a ‘0’ then change it into ‘1’ otherwise change it into ‘0’). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions.
1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2).
2. Q x y (1 <= x, y <= n) querys A[x, y].
【题目分析】
还是一道区间查询的题目,看到之后很容易想到用二维的树状数组去求解,但是这道题询问的是关于1、0这两种情况,而且还要求01反转。很容易,%2求解就可以了。
【代码】
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
const int MAXN = 1010;
int lowbit(int x){return x&(-x);}
int c[MAXN][MAXN];
int n;
int sum(int x,int y)
{
int ret = 0;
for(int i = x;i > 0;i -= lowbit(i))
for(int j = y;j > 0;j -= lowbit(j))
ret += c[i][j];
return ret;
}
void add(int x,int y,int val)
{
for(int i = x;i <= n;i += lowbit(i))
for(int j = y;j <= n;j += lowbit(j))
c[i][j] += val;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int q;
scanf("%d%d",&n,&q);
memset(c,0,sizeof(c));
char op[10];
int x1,y1,x2,y2;
while(q--)
{
scanf("%s",op);
if(op[0] == 'C')
{
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
add(x1,y1,1);
add(x2+1,y1,1);
add(x1,y2+1,1);
add(x2+1,y2+1,1);
}
else
{
scanf("%d%d",&x1,&y1);
if(sum(x1,y1)%2 == 0)printf("0\n");
else printf("1\n");
}
}
if(T > 0)printf("\n");
}
return 0;
}
本文介绍了一种使用二维树状数组解决特定矩阵操作问题的方法。针对一个N*N的矩阵,通过“not”操作实现0和1的反转,并支持两种指令:一是矩形区域内的元素反转,二是查询指定位置的元素值。文章提供了完整的C++代码实现。
1566

被折叠的 条评论
为什么被折叠?



