多智能体系统集群协同控制实验平台详解与典型案例

本文介绍了智能体集群研究的重要性和验证方法,强调了机器人实验的必要性。动作捕捉系统,如NOKOV度量动作捕捉,解决了室内定位精度和大规模智能体识别的问题,尤其在Crazyswarm多无人机集群编队实验平台、Robotarium机器人平台以及中科院自动化所智能集群平台中得到应用。这些平台利用动作捕捉系统实现高精度定位,支持多智能体协同控制实验,涵盖编队控制、路径规划、避障等多种研究方向。

目录

一、机器人实验是智能体集群研究必要手段

二、动作捕捉系统解决智能体集群实验系统多个痛点 

三、多智能体集群协同控制实验平台 

1.Crazyswarm多无人机集群编队实验平台

2.Robotarium机器人平台

3.中科院自动化所智能集群平台


为了应对实际环境中复杂的场景,多个智能体协作研究成为了必经之路。但当系统规模较大时,集中制方法不足以满足要求。基于自组织系统控制的多智能体集群研究具备完成复杂任务的能力。

 

一、机器人实验是智能体集群研究必要手段

进行智能体集群研究时,通过不同设计方法建立的机器人系统能否实现预期的行为是衡量该系统性能的依据,主要通过三种方法进行验证:动力学模型、计算机仿真及机器人实验。

动力学模型通过随机过程及动力学方法等理论工具对系统收敛性进行验证,相较于其他方法的抽象层次更高,但是需要预设很多前提,但是在实际智能体集群过程中存在噪声等随机条件,无法实现相对统一的模型。

计算机仿真利用计算机对环境与智能体、智能体个体间的相互作用进行模拟,验证系统的性能并进行优化。该方法可以完成大规模的机器人系统验证,提高系统验证效率,但是真实环境中的通信噪声、地面摩擦、智能体间的碰撞都可能对个体产生影响,进而影响群体行为,仿真并不能完全复现真实场景。

大部分机器人实验在实验室的可控环境下进行,光照强度、地面摩擦系数等条件可由研究人员定量控制,而且实验中的环境噪声、智能体间的碰撞及通信干扰等实际存在,因此机器人实验是验证机器人系统可行性及鲁棒性的必要手段。

二、动作捕捉系统解决智能体集群实验系统多个痛点 

智能体集群实验系统实现,需要满足在室内同时定位多个智能体,且由于室内空间小,要求定位精度高。

由于室内信号弱,利用GPS无法实现室内定位。目前的室内定位方案包括激光SLAM、视觉SLAM、光流及UWB等。上述所有定位方式需要优先被解决的问题在于定位精度低(其中定位精度最高的UWB为厘米级),此外还存在如视觉定位方式占用过多计算资源,UWB功率需要低于一定门限(以避免干扰其他通讯设备)等,对于空间不开阔、智能体密度高的室内实验环境有较大局限性。

利用动作捕捉系统作为多智能体室内定位方案有效解决上述问题。

NOKOV度量动作捕捉系统作为一种外部设备,利用布置在场地四周的光学动作捕捉镜头拍摄固定在各智能体上的反光标志点,通过计算出标志点的三维空间坐标,确定智能体的位置(利用同一智能体上多点还可以获取姿态信息),定位精度可以达到亚毫米级。由于动作捕捉系统自身计算出位置信息,并不占用智能体的计算资源。且动捕系统为外置设备,可以减轻无人机负载。NOKOV度量动作捕捉系统可以同时定位40个以上的智能体,且采样频率高达

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值