4916: 神犇和蒟蒻

本文探讨了数论中两个特定求和问题的解决方法:∑Ni=1μ(i2) 和 ∑Ni=1φ(i2),通过杜教筛算法实现了高效的计算,并分享了具体的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接

题目大意:求 Ni=1μ(i2) Ni=1φ(i2)

题解:第一问呵呵
第二问求 Ni=1φ(i)i
可以杜教筛
推导

我的收获:23333

#include <cstdio>
#include <map>
#define N 1000010
#define mod 6000000042ll
using namespace std;
typedef long long ll;
map<ll , ll> f;
map<ll , ll>::iterator it;
ll m = 1000000 , phi[N] , prime[N] , tot , sum[N];
bool np[N];
ll s1(ll l , ll r)
{
    return (l + r) * (r - l + 1) % mod / 2;
}
ll s2(ll x)
{
    return x * (x + 1) % mod * (2 * x + 1) % mod / 6;
}
ll query(ll n)
{
    if(n <= m) return sum[n];
    it = f.find(n);
    if(it != f.end()) return it->second;
    ll ans = s2(n) , i , last;
    for(i = 2 ; i <= n ; i = last + 1) last = n / (n / i) , ans = (ans - s1(i , last) * query(n / i) % mod + mod) % mod;
    f[n] = ans;
    return ans;
}
int main()
{
    ll i , j , n;
    phi[1] = sum[1] = 1;
    for(i = 2 ; i <= m ; i ++ )
    {
        if(!np[i]) phi[i] = i - 1 , prime[++tot] = i;
        for(j = 1 ; j <= tot && i * prime[j] <= m ; j ++ )
        {
            np[i * prime[j]] = 1;
            if(i % prime[j] == 0)
            {
                phi[i * prime[j]] = phi[i] * prime[j];
                break;
            }
            else phi[i * prime[j]] = phi[i] * (prime[j] - 1);
        }
        sum[i] = (sum[i - 1] + i * phi[i]) % mod;
    }
    scanf("%lld" , &n);
    printf("1\n%lld\n" , query(n) % 1000000007);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值