题目大意:求无向图中,两对点间最短路的最长公共路径
题解:先求出最短路图。然后可以建成DAG跑最长链,题解,因为题目中的公共路径没有限制方向,这里直接枚举点对进行判断就可以了……
我的收获:最短路图……get新的判断最短路方法……似乎一种枚举边一种枚举点……
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
using namespace std;
#define M 1505
#define INF 0x3f3f3f3f
int n,m,t;
int s1,t1,s2,t2,ls1,ls2;
int head[M],ds1[M],dt1[M],ds2[M],dt2[M],q[1000005];
bool vis[M];
struct edge{int to,val,nex;}e[M*M];
void add(int u,int v,int w){e[t]=(edge){v,w,head[u]},head[u]=t++;}
bool judge(int x){return ds1[x]+dt1[x]==ls1&&ds2[x]+dt2[x]==ls2;}//判断x在最短路上
void spfa(int s,int d[])
{
int l=1,r=0;
for(int i=1;i<=n;i++) d[i]=INF,vis[i]=0;
d[s]=0,vis[s]=1,q[++r]=s;
while(l<=r){
int u=q[l++];vis[u]=0;
for(int i=head[u];i!=-1;i=e[i].nex){
int v=e[i].to;
if(d[v]>d[u]+e[i].val){
d[v]=d[u]+e[i].val;
if(!vis[v]) vis[v]=1,q[++r]=v;
}
}
}
}
void work()
{
spfa(s1,ds1),spfa(t1,dt1);
spfa(s2,ds2),spfa(t2,dt2);
ls1=ds1[t1],ls2=ds2[t2];
int ans=-INF;
for(int i=1;i<=n;i++)
if(judge(i)) for(int j=1;j<=n;j++) if(judge(j)) ans=max(ans,abs(ds1[i]-ds1[j]));
cout<<ans<<endl;
}
void init()
{
int x,y,z;t=0;memset(head,-1,sizeof(head));
scanf("%d%d",&n,&m);
scanf("%d%d%d%d",&s1,&t1,&s2,&t2);
for(int i=1;i<=m;i++){
scanf("%d%d%d",&x,&y,&z);
add(x,y,z),add(y,x,z);
}
}
int main()
{
init();
work();
return 0;
}