[BZOJ]4950 二分图 + 最大匹配

本文介绍了一个关于仓库抢劫的问题,通过巧妙地利用二分图匹配算法来解决如何在不触动安保系统的情况下,最大化地减少货物数量。文章详细阐述了问题背景、输入输出格式及示例,并给出了具体的解决方案。

4950: [Wf2017]Mission Improbable

Time Limit: 1 Sec   Memory Limit: 1024 MB
Submit: 146   Solved: 70
[ Submit][ Status][ Discuss]

Description

那是春日里一个天气晴朗的好日子,你准备去见见你的老朋友Patrick,也是你之前的犯罪同伙。Patrick在编程竞赛
上豪赌输掉了一大笔钱,所以他需要再干一票。为此他需要你的帮助,虽然你已经金盆洗手了。你刚开始很不情愿,
因为你一点也不想再回到那条老路上了,但是你觉得听一下他的计划也无伤大雅。在附近的一个仓库里有一批货物,
包含一些贵重的消费性部件,Patrick企图从中尽可能多地偷些东西出来。这意味着要找一条进去的路,弄晕安保人
员,穿过各种各样的激光射线,你懂的,都是常见的抢劫技术。然而,仓库的核心装备了一套Patrick搞不定的安保系
统。这也是他需要你帮助他的地方。这批货物被放置在一些巨大的立方体箱里,每个箱子的尺寸都是相同的。这些
箱子堆放成许多整齐的堆,每个箱子可以表示成一个三维的网格。安保系统每个小时会用三台相机对这堆货物进行
一次拍照,相机分别为:前置相机(front camera),侧置相机(side camera)和顶置相机(top camera)。前置相机的照
片显示了每一行最高的那堆箱子的高度,侧置相机显示了每一列最高的那堆箱子的高度,顶置相机显示了每个位置是
否存在一堆箱子。如果安保系统发现任何一张照片出现了变化,它会立即拉响警报。一旦 Patrick 进去了,他会确
定每堆箱子的高度并且发给你。图1显示了一种网格可能的放置,以及每台相机会得到的视图。
图 1. 网格的高度值与对应的相机视图。
图 2. 洗劫后网格可能的高度值。
Patrick想尽可能多偷走一些箱子。由于他不能弄坏安保系统,他准备重新安排剩余每堆箱子的放置,使得下一次相
机取像时会得到相同的照片,从而骗过安保系统。在上面的例子中,他可以偷走九个箱子。图2显示了一种可能的剩
余箱子的安置方案能使得安保系统认为与原安置情况相同。Patrick想请你帮他确定在保证能骗过安保系统的情况
下他最多能偷走多少个箱子。你会帮他干完这最后一票么?

Input

第一行包含两个整数r(1≤r≤100)和c(1≤n≤100),分别表示网格的行数与列数。
接下来r行,每行包含c个整数,表示对应行上每堆立方体箱的高度(箱子的数量)。
所有的高度在0到10^9之间 (含边界) 。

Output

输出在不被发现的情况下最多能偷走多少箱子。

Sample Input

样例1
5 5
1 4 0 5 2
2 1 2 0 1
0 2 3 4 4
0 3 0 3 1
1 2 2 1 1
样例2
2 3
50 20 3
20 10 3

Sample Output

样例1
9
样例2
30

HINT

Source

[ Submit][ Status][ Discuss]


HOME Back

一开始考虑,每个不为0的位置都拿到1,然后每行每列最大值不能动。然后又考虑到,如果行列最大值相同,

我们可以在他们交叉的位置放一个最大值即可,而不需要两个。因此转化成一个二分图匹配的问题。(显然不同的

最大值不会互相干扰,因为之间根本不可能有边)每成功匹配到一个,就可以多拿一个最大值。

#include<stdio.h>
#include<bitset>
#include<cstring>
using namespace std;
bitset<205> vis;
long long sum;
int n, m, num, match[510], h[205], mp[205][205], mi[205], mj[205];
struct edge{ int nxt, v;}e[100005];
inline void add(int u, int v){
	e[++num].v = v, e[num].nxt = h[u], h[u] = num;
}
bool find(int u){
	for(int i = h[u]; i; i = e[i].nxt){
		int v = e[i].v;
		if(!vis[v]){
			vis[v] = true;
			if(!match[v] || find(match[v]))
				return match[v] = u;
		}
	}
	return false;
}
int main(){
	scanf("%d%d", &n, &m);
	for(int i = 1; i <= n; ++i)
		for(int j = 1; j <= m; ++j){
			scanf("%d", &mp[i][j]);
			mi[i] = max(mi[i], mp[i][j]);
			mj[j] = max(mj[j], mp[i][j]);
			if(mp[i][j]) sum += mp[i][j] - 1;
		}
	for(int i = 1; i <= n; ++i)
		for(int j = 1; j <= m; ++j)
			if(mi[i] == mj[j] && mp[i][j])
				add(i, j + n);
	for(int i = 1; i <= n; ++i)	if(mi[i]) sum -= mi[i] - 1;
	for(int j = 1; j <= m; ++j) if(mj[j]) sum -= mj[j] - 1;
	for(int i = 1; i <= n; ++i){
		if(find(i)) sum += mi[i] - 1;
		vis = 0;
	}
	printf("%lld\n", sum);
}


### BZOJ1461 字符串匹配 题解 针对BZOJ1461字符串匹配问题,解决方法涉及到了KMP算法以及树状数组的应用。对于此类问题,朴素的算法无法满足时间效率的要求,因为其复杂度可能高达O(ML²),其中M代表模式串的数量,L为平均长度[^2]。 为了提高效率,在这个问题中采用了更先进的技术组合——即利用KMP算法来预处理模式串,并通过构建失配树(也称为失败指针),使得可以在主串上高效地滑动窗口并检测多个模式串的存在情况。具体来说: - **前缀函数与KMP准备阶段**:先对每一个给定的模式串执行一次KMP算法中的pre_kmp操作,得到各个模式串对应的next数组。 - **建立失配树结构**:基于所有模式串共同构成的一棵Trie树基础上进一步扩展成带有失配链接指向的AC自动机形式;当遇到某个节点不存在对应字符转移路径时,则沿用该处失配链路直至找到合适的目标或者回到根部重新开始尝试其他分支。 - **查询过程**:遍历整个待查文本序列的同时维护当前状态处于哪一层级下的哪个子结点之中,每当成功匹配到完整的单词就更新计数值至相应位置上的f_i变量里去记录下这一事实。 下面是简化版Python代码片段用于说明上述逻辑框架: ```python from collections import defaultdict def build_ac_automaton(patterns): trie = {} fail = [None]*len(patterns) # 构建 Trie 树 for i,pattern in enumerate(patterns): node = trie for char in pattern: if char not in node: node[char]={} node=node[char] node['#']=i queue=[trie] while queue: current=queue.pop() for key,value in list(current.items()): if isinstance(value,int):continue if key=='#': continue parent=current[key] p=fail[current is trie and 0 or id(current)] while True: next_p=p and p.get(key,None) if next_p:break elif p==0: value['fail']=trie break else:p=fail[id(p)] if 'fail'not in value:value['fail']=next_p queue.append(parent) return trie,fail def solve(text, patterns): n=len(text) m=len(patterns) f=[defaultdict(int)for _in range(n)] ac_trie,_=build_ac_automaton(patterns) state=ac_trie for idx,char in enumerate(text+'$',start=-1): while True: trans=state.get(char,state.get('#',{}).get('fail')) if trans!=None: state=trans break elif '#'in state: state[state['#']['fail']] else: state=ac_trie cur_state=state while cur_state!={}and'#'in cur_state: matched_pattern_idx=cur_state['#'] f[idx][matched_pattern_idx]+=1 cur_state=cur_state['fail'] result=[] for i in range(len(f)-1): row=list(f[i].values()) if any(row): result.extend([sum((row[:j+1]))for j,x in enumerate(row[::-1])if x>0]) return sum(result) patterns=["ab","bc"] text="abc" print(solve(text,text)) #[^4] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值