利用DAEDALUS优化社会和经济活动,同时控制SARS-CoV-2传播(Matlab代码实现)

本文介绍了一种名为DAEDALUS的模型,它结合了流行病学和多部门经济模型,以评估在疫情管控中经济、社会和健康之间的平衡。通过优化策略,模型显示了与全面封锁相比的经济效益。文章详细展示了Matlab代码片段,用于模拟和分析不同部门的响应策略对疫情结果的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据、文章


💥1 概述

文献来源:

摘要
为了研究在疫情管理中经济、社会和健康结果之间的权衡,DAEDALUS将SARS-CoV-2传播的动态流行病学模型与多部门经济模型相结合,反映了传播和复杂供应链中的部门异质性。该模型确定了优化经济生产的缓解策略,同时限制感染,以确保医院的容量不会超载,同时允许包括教育部门在内的重要服务保持活跃。该模型通过经济部门区分关闭,保持那些对传播贡献较小但对经济产出有很大贡献以及生产重要服务的部门作为中间或最终消费产品。在对英国63个部门进行说明性应用中,与在六个月内对非必要活动实施全面封锁相比,该模型实现了约1610亿英镑(24%)至1930亿英镑(29%)的经济收益。尽管它是为SARS-CoV-2设计的,但DAEDALUS具有足够的灵活性,可以适用于具有不同流行病学特征的大流行病。

📚2 运行结果

部分代码:

maxY=96000;
%
hold on;
for i=2:length(tvec)-1
    plot(tvec(i)*[1,1],[0,maxY],'k--','linewidth',1)
end
for j=1:numThresh
    plot([0,tvec(end)],[thresh(j),thresh(j)],'-','linewidth',lw,'color',.5*[1,1,1])
end

hh0=plot(tlda,hoslda,'-','linewidth',lw,'color',[0.5 0.5 0.5]);
hh4=plot(tfo,hosfo,':','linewidth',lw,'color',[0.5 0.5 0.5]);
hh1=plot(ta1,hosa1,'-','linewidth',lw,'color','blue');
hh2=plot(ta2,hosa2,'-','linewidth',lw,'color','red');
hh3=plot(ta3,hosa3,'-','linewidth',lw,'color',[0.9290, 0.6940, 0.1250]);
hh5=plot(tfo(1:250),hosfo(1:250),'-','linewidth',lw,'color','black');

% points=tvec+10;
% pointsy=.93*maxY;
% txt={'1','2','3','4','5','6'};
% text(10,pointsy,'PRE','fontsize',15);
% text(tvec(2)+5,pointsy,'LD','fontsize',15);
% for i=3:lt-1
%     text(points(i),pointsy,txt{i-2},'fontsize',15)
% end
xlim([0,tvec(end)]);
ylim([0,maxY]);
axis square;
xlabel('Time','FontSize',fs);
ylabel('Hospital Occupancy','FontSize',fs);%yvar
vec_pos=get(get(gca,'ylabel'),'Position');
set(get(gca,'ylabel'),'Position',vec_pos+[-20 0 0]);
%xticks([1,32,61,92,122,153,183,214,245,275,306,336,367,398])
%xticklabels({'Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec','Jan','Feb'})
set(gca,'xtick',[1,32,61,92,122,153,183,214,245,275,306,336,367,398]);
set(gca,'ytick',[0:12000:96000]);
set(gca,'xticklabels',{'Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec','Jan','Feb'});
if numPeriods==5
    xlabels2=({'PRE','LD','1','2','3'});
elseif numPeriods==8
    %xlabels2=({'Jan','Mar 26th','Sep','Nov','Jan'});
    xlabels2=({'PRE','LD','1','2','3','4','5','6'});
else
    error('Data missing for nunmPeriods')
end
xtickangle(45);
ax = gca;
ax.YAxis.Exponent = 3;
box on;
grid on;
grid minor;
%legend([hh1,hh2],'Inc.','Hosp. occ.','location','west')
%legend([hh1,hh2,hh3,hh4,hh5],'Incidence','I','H','D','V','location','northwest');
legend([hh0,hh4,hh1,hh2,hh3],'LDA','FO','A (12,000)','A (18,000)','A (24,000)','Position',[-0.245 0.325 1 1]);

pointsx=385;
pointsy=10^3*[2.5,13.5,19.5,25.5,82];
txt=[hlda,ha1,ha2,ha3,hfo];
for i=1:5
    text(pointsx,pointsy(i),['拢' num2str(txt(i)) 'bn'],'fontsize',12);
end

hold off;

%%

xoptim=repmat(data.xmin',3,1);
xoptim(55:63:end)=0.80;
[flda,g,~]=heRunCovid19(pr,vx,n,ntot,na,NN,NNbar,NNrep,Dout,beta,xoptim,tvec,0,data);
hlda=round(sum(xoptim.*repmat((6/numInt)*data.obj,numInt,1))/1000);

load('B1.mat')
[fa1,g,~]=heRunCovid19(pr,vx,n,ntot,na,NN,NNbar,NNrep,Dout,beta,xoptim,tvec,0,data);
ha1=round(sum(xoptim.*repmat((6/numInt)*data.obj,numInt,1))/1000);

load('B2.mat');
[fa2,g,~]=heRunCovid19(pr,vx,n,ntot,na,NN,NNbar,NNrep,Dout,beta,xoptim,tvec,0,data);
ha2=round(sum(xoptim.*repmat((6/numInt)*data.obj,numInt,1))/1000);

load('B3.mat');
[fa3,g,~]=heRunCovid19(pr,vx,n,ntot,na,NN,NNbar,NNrep,Dout,beta,xoptim,tvec,0,data);
ha3=round(sum(xoptim.*repmat((6/numInt)*data.obj,numInt,1))/1000);

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

🌈4 Matlab代码、数据、文章

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值