【MATLAB】基于VMD-SSA-GRU的回归预测模型

有意向获取代码,请转文末观看代码获取方式~

1 基本定义

基于VMD-SSA-GRU的回归预测模型是一种集成了变分模态分解(VMD)、同步滑动平均(SSA)和门控循环单元(GRU)的复杂时间序列预测方法。下面将详细介绍这三种技术结合在一起时的基本理论。

  1. 变分模态分解(VMD): 变分模态分解是一种信号处理技术,用于将非线性和非平稳信号分解为一组固有模态函数(IMFs),这些IMFs具有不同的频率特性。VMD通过优化算法来确定信号的内在频率成分,使得每个IMF都是一个局部振荡信号,并且满足一定的正交性条件。VMD的优势在于能够处理具有不同频率和幅度变化的复杂信号。

  2. 麻雀搜索算法(SSA): SSA麻雀搜索算法(Sparrow Search Algorithm, SSA)是一种基于自然界麻雀觅食行为的启发式优化算法。麻雀搜索算法是模拟麻雀在寻找食物时的群体协作和个体竞争行为,通过迭代搜索过程来寻找最优解或近似最优解。下面详细介绍SSA的基本理论:

  3. 门控循环单元(GRU): 门控循环单元是一种用于处理序列数据的神经网络结构,它与长短期记忆网络(LSTM)类似,但结构更为简单。GRU通过引入更新门(update gate)来控制信息在时间步之间的流动,从而能够捕捉长期依赖关系。GRU的优势在于它能够处理长序列数据,并且计算效率较高。

结合这三个技术,基于VMD-SSA-GRU的回归预测模型的基本理论如下:

  • <

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Lwcah(全网各平台账号同名)

您的鼓励是我创作的最大的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值