An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.

Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print the root of the resulting AVL tree in one line.
Sample Input 1:
5
88 70 61 96 120
Sample Output 1:
70
Sample Input 2:
7
88 70 61 96 120 90 65
Sample Output 2:
88
#include <stdio.h>
#include <stdlib.h>
typedef struct AVLNode* Position;
typedef Position AVLTree;
struct AVLNode{
int data;
AVLTree left;
AVLTree right;
int height;
};
int Max(int a, int b);
int GetHeight(AVLTree T);
AVLTree Insert(AVLTree T, int X);
AVLTree SingleLeftRotation(AVLTree A);
AVLTree SingleRightRotation(AVLTree A);
AVLTree DoubleLeftRightRotation(AVLTree A);
AVLTree DoubleRightLeftRotation(AVLTree A);
int main()
{
int n, temp;
AVLTree root = NULL;
scanf("%d", &n);
while(n--){
scanf("%d", &temp);
root = Insert(root, temp);
}
printf("%d", root->data);
return 0;
}
int Max(int a, int b){
return a > b ? a : b;
}
int GetHeight(AVLTree T){
int max, left, right;
if(T){
left = GetHeight(T->left);
right = GetHeight(T->right);
max = Max(left, right);
return (max+1);
}else return 0;
}
AVLTree Insert(AVLTree T, int X){
if(!T){//空结点
T = (AVLTree)malloc(sizeof(struct AVLNode));
T->data = X;
T->height = 1;
T->left = T->right = NULL;
}else if( X < T->data){
T->left = Insert(T->left, X);//插入到左子树中
if( GetHeight(T->left) - GetHeight(T->right) == 2){//破坏了平衡
if( X < T->left->data)//需要左旋
T = SingleLeftRotation(T);
else//需要左右双旋
T = DoubleLeftRightRotation(T);
}
}else if( X > T->data){
T->right = Insert(T->right, X);//插入到右子树中
if( GetHeight(T->left) - GetHeight(T->right) == -2){
if( X > T->right->data)//右旋
T = SingleRightRotation(T);
else//右左双旋
T = DoubleRightLeftRotation(T);
}
}//X==T->data不作处理
T->height = Max(GetHeight(T->left), GetHeight(T->right)) + 1;//更新高度,由于是递归,会自下往上更新高度
return T;
}
AVLTree SingleLeftRotation(AVLTree A){
AVLTree B = A->left;//左旋必有左结点
A->left = B->right;//B的右子树成为A的左子树
B->right = A;//A成为B的右子树
A->height = Max(GetHeight(A->left), GetHeight(A->right)) + 1;//更新高度
B->height = Max(GetHeight(B->left), GetHeight(B->right)) + 1;
return B;//B作为根节点返回
}
AVLTree SingleRightRotation(AVLTree A){
AVLTree B = A->right;//右旋必有右结点
A->right = B->left;//B的左子树成为A的右子树
B->left = A;//A成为B的左子树
A->height = Max(GetHeight(A->left), GetHeight(A->right)) + 1;//更新高度
B->height = Max(GetHeight(B->left), GetHeight(B->right)) + 1;
return B;//B作为根节点返回
}
AVLTree DoubleLeftRightRotation(AVLTree A){//左右双旋 A必有左结点,其左结点必有右结点
A->left = SingleRightRotation(A->left);//双旋实际上可以看作左结点右旋,根节点左旋两次单旋
return SingleLeftRotation(A);//返回新的根结点
}
AVLTree DoubleRightLeftRotation(AVLTree A){//右左双旋,A必有右结点,其右结点必有左结点
A->right = SingleLeftRotation(A->right);//实际上可以看作右结点左旋,根节点右旋
return SingleRightRotation(A);//返回新的根结点
}
本文介绍AVL树的基本概念及实现方法,包括自我平衡二叉搜索树的定义、旋转规则,并通过具体示例演示如何进行插入操作并保持树的平衡。
6668

被折叠的 条评论
为什么被折叠?



