点旋转
点P在直角坐标系下的坐标为(x,y),表示成极坐标(r,α),则有关系式:
{ x = r ⋅ cos α y = r ⋅ sin α \left\{\begin{array}{l} x=r \cdot \cos \alpha \\ y=r \cdot \sin \alpha \end{array}\right. {
x=r⋅cosαy=r⋅sinα
点P绕坐标系原点逆时针旋转θ角度,得点P’的坐标为(x’,y’),极坐标表示为(r,α+θ),则有关系式:
{ x ′ = r ⋅ cos ( α + θ ) = r ⋅ cos α ⋅ cos θ − r ⋅ sin α ⋅ sin θ y ′ = r ⋅ sin ( α + θ ) = r ⋅ sin α ⋅ cos θ + r ⋅ cos α ⋅ sin θ \left\{\begin{array}{l} x^{\prime}=r \cdot \cos (\alpha+\theta)=r \cdot \cos \alpha \cdot \cos \theta-r \cdot \sin \alpha \cdot \sin \theta \\ y^{\prime}=r \cdot \sin (\alpha+\theta)=r \cdot \sin \alpha \cdot \cos \theta+r \cdot \cos \alpha \cdot \sin \theta \end{array}\right. {
x′=r⋅cos(α+θ)=r⋅cosα⋅cosθ−r⋅sinα⋅sinθy′=r⋅sin(α+θ)=r⋅sinα⋅cosθ+r⋅cosα⋅sinθ
化简可得:
{ x ′ = x ⋅ cos θ − y ⋅ sin θ y ′ = y ⋅ cos θ + x ⋅ sin θ \left\{\begin{array}{l} x^{\prime}=x \cdot \cos \theta-y \cdot \sin \theta \\ y^{\prime}=y \cdot \cos \theta+x \cdot \sin \theta \end{array}\right. <