题目描述:
Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, ...
) which sum to n.
For example, given n = 12
, return 3
because 12 = 4 + 4 + 4
; given n = 13
, return 2
because 13 = 4 + 9
.
求一个数最少为多少个平方数的和。采用动态规划,令i最少可以为dp[i]个平方数之和,那么可以令j*j<=i,从而dp[i]=min(dp[i-j*j]+1),时间复杂度为O(n^(3/2))。
class Solution {
public:
int numSquares(int n) {
if(n==0) return 0;
vector<int> dp(n+1,INT_MAX);
dp[0]=0;
for(int i=1;i<=n;i++)
{
for(int j=1;j*j<=i;j++)
{
dp[i]=min(dp[i-j*j]+1,dp[i]);
}
}
return dp[n];
}
};