LeetCode #889. Construct Binary Tree from Preorder and Postorder Traversal

本文介绍了一种算法,该算法可以根据给定的预序和后序遍历序列重建二叉树。通过分析序列特征,算法能够确定每个节点的位置,从而构建出与原始序列匹配的二叉树结构。

题目描述:

Return any binary tree that matches the given preorder and postorder traversals.

Values in the traversals pre and post are distinct positive integers.

Example 1:

Input: pre = [1,2,4,5,3,6,7], post = [4,5,2,6,7,3,1]
Output: [1,2,3,4,5,6,7]

Note:

  • 1 <= pre.length == post.length <= 30
  • pre[] and post[] are both permutations of 1, 2, ..., pre.length.
  • It is guaranteed an answer exists. If there exists multiple answers, you can return any of them.
class Solution {
public:
    TreeNode* constructFromPrePost(vector<int>& pre, vector<int>& post) {
        for(int i=0;i<post.size();i++) index[post[i]]=i;
        return construct_tree(pre,post,0,pre.size()-1,0,post.size()-1);
    }
    
    TreeNode* construct_tree(vector<int>& pre, vector<int>& post, int a, int b, int c, int d)
    {
        if(a>b) return NULL;
        if(a==b) return new TreeNode(pre[a]);
        int root_val=pre[a];
        int left_val=pre[a+1];
        int left_length=index[left_val]-c+1; // 左子树的节点数
        TreeNode* root=new TreeNode(root_val);
        root->left=construct_tree(pre,post,a+1,a+left_length,c,c+left_length-1);
        root->right=construct_tree(pre,post,a+left_length+1,b,c+left_length,d-1);
        return root;
    }
    
private:
    unordered_map<int,int> index; // 存储后序遍历值和下标之间的关系
};

 

【Koopman】遍历论、动态模态分解和库普曼算子谱特性的计算研究(Matlab代码实现)内容概要:本文围绕【Koopman】遍历论、动态模态分解和库普曼算子谱特性的计算研究展开,重点介绍基于Matlab的代码实现方法。文章系统阐述了遍历理论的基本概念、动态模态分解(DMD)的数学原理及其与库普曼算子谱特性之间的内在联系,展示了如何通过数值计算手段分析非线性动力系统的演化行为。文中提供了完整的Matlab代码示例,涵盖数据驱动的模态分解、谱分析及可视化过程,帮助读者理解并复现相关算法。同时,文档还列举了多个相关的科研方向和技术应用场景,体现出该方法在复杂系统建模与分析中的广泛适用性。; 适合人群:具备一定动力系统、线性代数与数值分析基础,熟悉Matlab编程,从事控制理论、流体力学、信号处理或数据驱动建模等领域研究的研究生、博士生及科研人员。; 使用场景及目标:①深入理解库普曼算子理论及其在非线性系统分析中的应用;②掌握动态模态分解(DMD)算法的实现与优化;③应用于流体动力学、气候建模、生物系统、电力系统等领域的时空模态提取与预测;④支撑高水平论文复现与科研项目开发。; 阅读建议:建议读者结合Matlab代码逐段调试运行,对照理论推导加深理解;推荐参考文中提及的相关研究方向拓展应用场景;鼓励在实际数据上验证算法性能,并尝试改进与扩展算法功能。
本系统采用微信小程序作为前端交互界面,结合Spring Boot与Vue.js框架实现后端服务及管理后台的构建,形成一套完整的电子商务解决方案。该系统架构支持单一商户独立运营,亦兼容多商户入驻的平台模式,具备高度的灵活性与扩展性。 在技术实现上,后端以Java语言为核心,依托Spring Boot框架提供稳定的业务逻辑处理与数据接口服务;管理后台采用Vue.js进行开发,实现了直观高效的操作界面;前端微信小程序则为用户提供了便捷的移动端购物体验。整套系统各模块间紧密协作,功能链路完整闭环,已通过严格测试与优化,符合商业应用的标准要求。 系统设计注重业务场景的全面覆盖,不仅包含商品展示、交易流程、订单处理等核心电商功能,还集成了会员管理、营销工具、数据统计等辅助模块,能够满足不同规模商户的日常运营需求。其多店铺支持机制允许平台方对入驻商户进行统一管理,同时保障各店铺在品牌展示、商品销售及客户服务方面的独立运作空间。 该解决方案强调代码结构的规范性与可维护性,遵循企业级开发标准,确保了系统的长期稳定运行与后续功能迭代的可行性。整体而言,这是一套技术选型成熟、架构清晰、功能完备且可直接投入商用的电商平台系统。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
<think>我们将把给定的Java代码转换为Python代码。原Java代码实现了二叉树的前序遍历(递归方式)。 前序遍历的顺序是:根节点 -> 左子树 -> 右子树。 在Python中,我们同样可以定义一个TreeNode类来表示二叉树的节点,然后实现递归的前序遍历。 注意:在Python中,我们通常使用列表(list)来存储遍历结果。 步骤: 1. 定义TreeNode类(如果题目中已经定义,则不需要重复定义,这里为了完整起见,我们给出定义)。 2. 实现一个Solution类,其中包含preorderTraversal方法,该方法接收一个根节点,返回一个整数列表。 3.preorderTraversal方法中,我们初始化一个空列表,然后调用递归辅助函数进行遍历。 4. 递归辅助函数preorder将节点和结果列表作为参数,按照前序遍历的顺序将节点值添加到列表中。 考虑到LeetCode的环境,我们假设TreeNode类已经定义好。因此,我们只需要写出Solution类的代码。 下面是转换后的Python代码:</think>### 二叉树前序遍历的 Python 实现 以下是 Java 代码的等效 Python 实现,使用递归方法完成二叉树的前序遍历: ```python from typing import List, Optional # 定义二叉树节点类 class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right class Solution: def preorderTraversal(self, root: Optional[TreeNode]) -> List[int]: result = [] # 存储遍历结果的列表 self.preorder(root, result) # 调用递归方法 return result def preorder(self, node: Optional[TreeNode], result: List[int]) -> None: # 递归终止条件:遇到空节点 if node is None: return # 前序遍历步骤: # 1. 访问当前节点(添加到结果列表) result.append(node.val) # 2. 递归遍历左子树 self.preorder(node.left, result) # 3. 递归遍历右子树 self.preorder(node.right, result) ``` ### 代码解释: 1. **TreeNode 类**: - Python 使用类定义二叉树节点 - `__init__` 构造函数初始化节点值、左子节点和右子节点 - 使用 `Optional` 类型表示节点可以为 None 2. **Solution 类**: - `preorderTraversal` 方法: - 初始化空列表 `result` 存储结果 - 调用递归辅助方法 `preorder` - 返回最终结果列表 - `preorder` 递归辅助方法: - **基线条件**:当节点为 None 时直接返回 - **递归过程**: 1. 访问当前节点(添加到结果列表) 2. 递归遍历左子树 3. 递归遍历右子树 3. **前序遍历顺序**: - 根节点 → 左子树 → 右子树 - 示例:对于二叉树 `[1,null,2,3]`: ``` 1 \ 2 / 3 ``` 输出结果为 `[1,2,3]` ### 使用示例: ```python # 构建示例二叉树: # 1 # \ # 2 # / # 3 # 创建节点 n1 = TreeNode(1) n2 = TreeNode(2) n3 = TreeNode(3) # 构建树结构 n1.right = n2 n2.left = n3 # 执行遍历 solution = Solution() print(solution.preorderTraversal(n1)) # 输出: [1, 2, 3] ``` ### 复杂度分析: - **时间复杂度**:O(n),每个节点恰好访问一次 - **空间复杂度**:O(h),其中 h 是二叉树的高度(递归调用栈空间) - 最坏情况(树退化为链表):O(n) - 平衡二叉树情况:O(log n)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值