hdu2639 Bone Collector II--01背包K优解

本文详细介绍了HDU2639问题的解决方法,涉及01背包问题的扩展,求解第K大的骨值最大值。通过构建有序队列合并的思想,实现复杂度优化至O(VNK),并提供了AC代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原题链接: http://acm.hdu.edu.cn/showproblem.php?pid=2639


一:原题内容

Problem Description
The title of this problem is familiar,isn't it?yeah,if you had took part in the "Rookie Cup" competition,you must have seem this title.If you haven't seen it before,it doesn't matter,I will give you a link:
Here is the link: http://acm.hdu.edu.cn/showproblem.php?pid=2602
Today we are not desiring the maximum value of bones,but the K-th maximum value of the bones.NOTICE that,we considerate two ways that get the same value of bones are the same.That means,it will be a strictly decreasing sequence from the 1st maximum , 2nd maximum .. to the K-th maximum.

If the total number of different values is less than K,just ouput 0.

Input
The first line contain a integer T , the number of cases.
Followed by T cases , each case three lines , the first line contain two integer N , V, K(N <= 100 , V <= 1000 , K <= 30)representing the number of bones and the volume of his bag and the K we need. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.
 
Output
One integer per line representing the K-th maximum of the total value (this number will be less than 2 31).

Sample Input
  
3 5 10 2 1 2 3 4 5 5 4 3 2 1 5 10 12 1 2 3 4 5 5 4 3 2 1 5 10 16 1 2 3 4 5 5 4 3 2 1

Sample Output
  
12 2 0
 
二:分析理解
第K优解问题

其基本思想是将每个状态都表示成有序队列,将状态转移方程中的max/min转化成有序队列的合并。这里仍然以01背包为例讲解一下。
首 先看01背包求最优解的状态转移方程:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}。如果要求第K优解,那么 状态f[i][v]就应该是一个大小为K的数组f[i][v][1..K]。其中f[i][v][k]表示前i个物品、背包大小为v时,第k优解的值。 “f[i][v]是一个大小为K的数组”这一句,熟悉C语言的同学可能比较好理解,或者也可以简单地理解为在原来的方程中加了一维。显然f[i][v] [1..K]这K个数是由大到小排列的,所以我们把它认为是一个有序队列。

然 后原方程就可以解释为:f[i][v]这个有序队列是由f[i-1][v]和f[i-1][v-c[i]]+w[i]这两个有序队列合并得到的。有序队列 f[i-1][v]即f[i-1][v][1..K],f[i-1][v-c[i]]+w[i]则理解为在f[i-1][v-c[i]][1..K]的每 个数上加上w[i]后得到的有序队列。合并这两个有序队列并将结果的前K项储存到f[i][v][1..K]中的复杂度是O(K)。最后的答案是f[N] [V][K]。总的复杂度是O(VNK)。

01背包再清楚不过了,主要还是是有序队列合并的问题。

三:AC代码

#include<iostream>  
#include<algorithm>  

using namespace std;

int T;
int N, V, K;
int A[35], B[35];
int va[105], vo[105];
int dp[1005][35];

int main()
{
	scanf("%d", &T);
	while (T--)
	{
		scanf("%d%d%d", &N, &V, &K);

		memset(dp, 0, sizeof(dp));

		for (int i = 1; i <= N; i++)
			scanf("%d", &va[i]);
		for (int i = 1; i <= N; i++)
			scanf("%d", &vo[i]);

		for (int i = 1; i <= N; i++)
		{
			for (int j = V; j >= vo[i]; j--)
			{
				for (int k = 1; k <= K; k++)
				{
					A[k] = dp[j - vo[i]][k] + va[i];
					B[k] = dp[j][k];
				}

				A[K + 1] = -1;
				B[K + 1] = -1;
				int a, b, c;
				a = b = c = 1;

				while (c <= K && (A[a] != -1 || B[b] != -1))
				{
					if (A[a] > B[b])
						dp[j][c] = A[a++];
					else
						dp[j][c] = B[b++];

					if (dp[j][c] != dp[j][c - 1])//去重
						c++;
				}

			}
		}

		printf("%d\n", dp[V][K]);

	}

	return 0;
}





电动汽车数据集:2025年3K+记录 真实电动汽车数据:特斯拉、宝马、日产车型,含2025年电池规格和销售数据 关于数据集 电动汽车数据集 这个合成数据集包含许多品牌和年份的电动汽车和插电式车型的记录,捕捉技术规格、性能、定价、制造来源、销售和安全相关属性。每一行代表由vehicle_ID标识的唯一车辆列表。 关键特性 覆盖范围:全球制造商和车型组合,包括纯电动汽车和插电式混合动力汽车。 范围:电池化学成分、容量、续航里程、充电标准和速度、价格、产地、自主水平、排放、安全等级、销售和保修。 时间跨度:模型跨度多年(包括传统和即将推出的)。 数据质量说明: 某些行可能缺少某些字段(空白)。 几个分类字段包含不同的、特定于供应商的值(例如,Charging_Type、Battery_Type)。 各列中的单位混合在一起;注意kWh、km、hr、USD、g/km和额定值。 列 列类型描述示例 Vehicle_ID整数每个车辆记录的唯一标识符。1 制造商分类汽车品牌或OEM。特斯拉 型号类别特定型号名称/变体。型号Y 与记录关联的年份整数模型。2024 电池_类型分类使用的电池化学/技术。磷酸铁锂 Battery_Capacity_kWh浮充电池标称容量,单位为千瓦时。75.0 Range_km整数表示充满电后的行驶里程(公里)。505 充电类型主要充电接口或功能。CCS、NACS、CHAdeMO、DCFC、V2G、V2H、V2L Charge_Time_hr浮动充电的大致时间(小时),上下文因充电方法而异。7.5 价格_USD浮动参考车辆价格(美元).85000.00 颜色类别主要外观颜色或饰面。午夜黑 制造国_制造类别车辆制造/组装的国家。美国 Autonomous_Level浮点自动化能力级别(例如0-5),可能包括子级别的小
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值