hud 3507,Print Article,斜率优化dp

这篇文章介绍了一道ACM-ICPC编程题,涉及如何使用斜率优化的动态规划方法来计算在给定成本限制下,将一篇文章按照最优顺序打印所需的最小成本。通过计算单词之间的成本差值,确定每行的最小成本组合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem - 3507 (hdu.edu.cn)

Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)
Total Submission(s): 26705    Accepted Submission(s): 8024


 

Problem Description
Zero has an old printer that doesn't work well sometimes. As it is antique, he still like to use it to print articles. But it is too old to work for a long time and it will certainly wear and tear, so Zero use a cost to evaluate this degree.
One day Zero want to print an article which has N words, and each word i has a cost Ci to be printed. Also, Zero know that print k words in one line will cost


M is a const number.
Now Zero want to know the minimum cost in order to arrange the article perfectly.
 

Input
There are many test cases. For each test case, There are two numbers N and M in the first line (0 ≤ n ≤ 500000, 0 ≤ M ≤ 1000). Then, there are N numbers in the next 2 to N + 1 lines. Input are terminated by EOF.
 

Output
A single number, meaning the mininum cost to print the article.
 

Sample Input
 
 
5 5
5
9
5
7
5
 

Sample Output
 
 
230
 

Author
Xnozero
 

Source

 解析:斜率优化dp

HDU3507 Print Article —— 斜率优化DP - h_z_cong - 博客园 (cnblogs.com)

#include<iostream>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<math.h>
#include<map>

using namespace std;
typedef long long LL;
const int N = 5e5 + 5;
int n, m;
LL c[N], f[N],q[N];

LL getup(int j, int k) {
	return f[j] + c[j] * c[j] - (f[k] + c[k] * c[k]);
}

LL getdown(int j, int k) {
	return 2 * (c[j] - c[k]);
}

int main() {
	while (scanf("%d%d", &n, &m) != EOF) {
		for (int i = 1; i <= n; i++) {
			scanf("%d", &c[i]);
			c[i] += c[i - 1];
		}
		f[0] = 0;
		int hh = 0, tt = 0;
		q[0] = 0;
		for (int i = 1; i <= n; i++) {
			while (hh < tt && getup(q[hh + 1], q[hh]) < getdown(q[hh + 1],q[ hh]) * c[i])hh++;
			int j = q[hh];
			f[i] = f[j] + (c[i] - c[j]) * (c[i] - c[j]) + m;
			while (hh < tt && getup(i, q[tt]) * getdown(q[tt], q[tt - 1]) <= getup(q[tt], q[tt - 1]) * getdown(i, q[tt]))tt--;
			q[++tt] = i;
		}
		printf("%d\n", f[n]);
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值