【题目】
设
D
,
E
,
F
D,E,F
D,E,F 分别为
△
A
B
C
\triangle ABC
△ABC 的三边
B
C
,
C
A
,
A
B
BC,CA,AB
BC,CA,AB 的中点,则
E
B
→
+
F
C
→
=
(
)
\overrightarrow{EB}+\overrightarrow{FC}=(\quad)
EB+FC=()
A
.
−
4
A.-4
A.−4
B
.
−
1
B.-1
B.−1
C
.
  
1
C. \;1
C.1
D
.
  
4
D. \;4
D.4
【解析】
[法一]
如图,作
E
H
/
/
F
C
EH//FC
EH//FC ,
D
C
DC
DC 的中点
G
G
G .
则
E
B
→
+
F
C
→
=
E
B
→
+
E
H
→
=
2
E
G
→
=
A
D
→
.
\overrightarrow{EB}+\overrightarrow{FC}=\overrightarrow{EB}+\overrightarrow{EH}=2\overrightarrow{EG}=\overrightarrow{AD}.
EB+FC=EB+EH=2EG=AD.
[法二]
因为
E
B
→
=
A
B
→
−
A
E
→
=
A
B
→
−
1
2
A
C
→
\overrightarrow{EB}=\overrightarrow{AB}-\overrightarrow{AE}=\overrightarrow{AB}-\dfrac{1}{2} \overrightarrow{AC}
EB=AB−AE=AB−21AC
F
C
→
=
A
C
→
−
A
F
→
=
A
C
→
−
1
2
A
B
→
\overrightarrow{FC}=\overrightarrow{AC}-\overrightarrow{AF}=\overrightarrow{AC}-\dfrac{1}{2} \overrightarrow{AB}
FC=AC−AF=AC−21AB两式相加有
E
B
→
+
F
C
→
=
1
2
(
A
B
→
+
A
C
→
)
=
A
D
→
.
\overrightarrow{EB}+\overrightarrow{FC}=\dfrac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})=\overrightarrow{AD}.
EB+FC=21(AB+AC)=AD.
故答案为:A