CLIP 模型架起了文本和图像的桥梁,但实际上很少有人会用它来进行文本检索,因为CLIP的文本编码器无法有效的对长文本进行语义建模。
为了解决这一问题,我们推出了 Jina CLIP v1,一个增强版的 OpenAI CLIP 模型,擅长文本-文本、文本-图像、图像-文本、图像-图像四个方向的检索。从现在起,你的 CLIP 模型不仅是图像检索器,更是强大的文本检索器。
在构建多模态 RAG 应用时,你不再需要在不同的向量模型之间切换,一个模型、两种模态、四个搜索方向 都交给 Jina CLIP v1。更关键的是,它还能够处理长达 8K 的输入长度。接下来,就让我们一探这款新模型的精华所在。
示例:用 Jina CLIP 实现零样本实时图像分类CLIP 模型架构
在 2021 年 1 月,OpenAI 推出了开创性的 CLIP 模型,其架构简洁却极具巧思:将一个文本编码器与一个图像编码器结合,在统一的向量空间中输出结果。CLIP 的文本向量与图像向量之间的距离,反映了两者语义关联的紧密程度。
CLIP 这一架构非常适用于跨模态检索和零样本分类任务,通过学习大量的图像和文本对,即使在没有针对性任务训练的情况下,也能理解并分类新的图像。

原始 CLIP 模型中的文本编码器是一个定制的神经网络,在图像编码器方面,OpenAI 则使用了一系列 ResNet 和 ViT 模型,再用图像描述进行训练,以生成相似的图像-文本向量。

这种方法非常有效,尤其是在零样本分类中的表现。举个例子,即使训练数据中没有标注宇航员的图像,CLIP 仍能凭借对文本和图像相关概念的理解,准确识别宇航员的图片。
然而,OpenAI 的 CLIP 也存在两大短板:
1. 文本输入容量非常有限。最多仅支持 77 个 token 的输入,根据 LongCLIP 的实验,实际上其有效输入不超过 20 个 token。
2. 在纯文本检索中表现不佳。主要原因有两点:首先,CLIP 模型的训练目标是对齐文本和图像,没有针对纯文本检索进行专门优化。其次,CLIP 模型的训练数据主要由相对较短的文本组成,难以泛化到更广阔的文本检索场景。
因此,在大多数应用到 CLIP 模型的实际应用场景中,如果涉及到纯文本检索任务,就需要引入其他专用文本向量模型并行使用