【算法简历修改、职业规划、校招实习咨询请私信联系】
Diffusion Model,这一深度生成模型,源自物理学中的扩散现象,呈现出令人瞩目的创新性。与传统的生成模型,如VAE、GAN相比,**它通过模拟数据由随机噪声逐步扩散至目标数据的过程,实现数据生成。**在图像、文本和音频生成等多个领域,Diffusion Model均展现出了卓越的性能。
其算法原理深入浅出,将数据生成过程视为一个马尔可夫链。数据从目标状态出发,每一步都逐渐向随机噪声过渡,直至达到纯粹的噪声状态。随后,通过逆向过程,数据从纯噪声逐渐恢复至目标状态。这一复杂过程通过一系列的条件概率分布得以精确描述。


优化过程则是通过最小化真实数据与生成数据之间的差异,对模型进行训练。常用的损失函数包括MSE(均方误差)和BCE(二元交叉熵)。
import torch
import torch.nn as nn
import torch.optim as optim
# 定义U-Net模型
class UNet(nn.Module):
# ...省略模型定义...
# 定义Diffusion Model
class DiffusionModel(nn.Module):
def __init__(self, unet):
super(DiffusionModel, self).__init__()
self.unet = unet
def forward(self, x_t, t):
# x_t为当前时刻的数据,t为噪声水平
# 利用U-Net预测噪声水平
noise_pred = self.unet(x_t, t)
# 根据预测的噪声水平生成数据
x_t_minus_1 = x_t - noise_pred * torch.sqrt(1 - torch.exp(-2 * t))
return x_t_minus_1
# 初始化模型和优化器
unet = UNet()
model = DiffusionModel(unet)
# 训练过程
for epoch in range(num_epochs):
for x_real in dataloader: # 从数据加载器中获取真实数据
# 前向过程
x_t = x_real # 从真实数据开始
for t in torch.linspace(0, 1, num_steps):
# 添加噪声
noise = torch.randn_like(x_t) * torch.sqrt(