直线
x1≠x2∈Rn,θ∈Rx_1 \neq x_2 \in R^n,\theta \in Rx1̸=x2∈Rn,θ∈R
y=θx1+(1−θ)x2=x2+θ(x1−x2)y = \theta x_1 + (1-\theta )x_2 = x_2 + \theta (x_1 - x_2)y=θx1+(1−θ)x2=x2+θ(x1−x2)
线段
x1≠x2∈Rn,θ∈[0,1]x_1 \neq x_2 \in R^n,\theta \in [0,1]x1̸=x2∈Rn,θ∈[0,1]
y=θx1+(1−θ)x2=x2+θ(x1−x2)y = \theta x_1 + (1-\theta )x_2 = x_2 + \theta (x_1 - x_2)y=θx1+(1−θ)x2=x2+θ(x1−x2)
仿射集(affine sets)
定义:一个集合C是仿射集,若$ \forall x_1,x_2 \in C ,则连接,则连接,则连接x_1,x_2$的直线也在集合内。
∀x1,x2∈C,θ∈R\forall x_1,x_2 \in C ,\theta \in R∀x1,x2∈C,θ∈R
y=θx1+(1−θ)x2∈Cy = \theta x_1 + (1-\theta )x_2 \in Cy=θx1+(1−θ)x2∈C
仿射组合
设x1,...xk∈C,θ1,...,θk∈R,θ1+...+θk=1x_1,...x_k \in C , \theta _1,...,\theta _k \in R,\theta _1 + ...+\theta _k =1x1,...xk∈C,θ1,...,θk∈R,θ1+...+θk=1
θ1x1+...+θkxk\theta _1x_1+...+\theta _kx_kθ1x1+...+θkxk
如果一个集合C是仿射集,则它的任意仿射组合都属于C。
跟C相关的子空间
V={x−x0∣x∈C},∀x0V = \left \{ x - x_0 | x \in C\right \},\forall x_0V={x−x0∣x∈C},∀x0
∀x1,x2∈V,α,β∈R⇒αx1+βx2∈V\forall x_1,x_2 \in V, \alpha ,\beta \in R \Rightarrow \alpha x_1 + \beta x_2 \in V∀x1,x2∈V,α,β∈R⇒αx1+βx2∈V
(仿射集要求α+β=1\alpha + \beta = 1α+β=1,跟C相关的子空间V:α∈R,β∈R\alpha \in R, \beta \in Rα∈R,β∈R)
仿射包
aff C={θ1x1+...θkxk∣∀x1,...,xk∈C,∀θ1+...+θk=1}C = \left \{ \theta _1 x_1 + ... \theta _kx_k | \forall x_1,...,x_k \in C, \forall \theta _1+...+ \theta _k = 1 \right \}C={θ1x1+...θkxk∣∀x1,...,xk∈C,∀θ1+...+θk=1}
(即对任意集合C,构造尽可能小的仿射集)
例:
线性方程组的解集是仿射集