题目:
证明:
cos2+cos4+⋯+cos2n=sinncos(n+1)sin1\cos 2+\cos 4+\cdots+\cos 2n=\frac{\sin n\cos(n+1)}{\sin 1}cos2+cos4+⋯+cos2n=sin1sinncos(n+1)
参考答案:
首先不加证明的给出两个公式(积化和差和和差化积其中的两个公式)
sinαcosβ=12[sin(α+β)+sin(α−β)]\sin \alpha \cos \beta=\frac{1}{2}[\sin (\alpha+\beta)+\sin (\alpha-\beta)]sinαcosβ=21[sin(α+β)+sin(α−β)]
sinα−sinβ=2cosα+β2sinα−β2\sin \alpha-\sin \beta=2 \cos \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2}sinα−sinβ=2cos2α+βsin2α−β
sin1(cos2+cos4+⋯+cos2n)=sin1cos2+sin1cos4+⋯+sin1cos2n=12(sin3−sin1)+12(sin5−sin3)+⋯+12(sin(2n+1)−sin(2n−1))=12(−sin1+sin3−sin3+sin5−sin5+sin7+⋯−sin(2n−1)+sin(2n+1))=12(sin(2n+1)−sin1)=cos(n+1)sinn\begin{aligned} \sin1(\cos2+\cos 4+\cdots+\cos 2n)&=\sin1\cos2+\sin1\cos4+\cdots+\sin1\cos2n\\ &=\frac{1}{2}(\sin 3-\sin1)+\frac{1}{2}(\sin5-\sin3)+\cdots+\frac{1}{2}(\sin(2n+1)-\sin(2n-1))\\ &=\frac{1}{2}(-\sin1+\sin3-\sin3+\sin 5-\sin 5+\sin7+\cdots-\sin(2n-1)+\sin(2n+1))\\ &=\frac{1}{2}(\sin(2n+1)-\sin1)\\ &=\cos(n+1)\sin n \end{aligned}sin1(cos2+cos4+⋯+cos2n)=sin1cos2+sin1cos4+⋯+sin1cos2n=21(sin3−sin1)+21(sin5−sin3)+⋯+21(sin(2n+1)−sin(2n−1))=21(−sin1+sin3−sin3+sin5−sin5+sin7+⋯−sin(2n−1)+sin(2n+1))=21(sin(2n+1)−sin1)=cos(n+1)sinn
所以
cos2+cos4+⋯+cos2n=sinncos(n+1)sin1\cos 2+\cos 4+\cdots+\cos 2n=\frac{\sin n\cos(n+1)}{\sin 1}cos2+cos4+⋯+cos2n=sin1sinncos(n+1)
2021年1月9日23:24:07