压缩映射
设 A A A 为 X X X 的子集,映射 f : A → A f:A\to A f:A→A 如果满足以下条件:
存在常数 0 ≤ q < 1 0\le q<1 0≤q<1, 使得 ρ ( f ( a 1 ) , f ( a 2 ) ≤ q ρ ( a 1 , a 2 ) , ∀ a 1 , a 2 ∈ A \rho(f(a_1),f(a_2)\le q\rho(a_1,a_2),\quad\forall a_1,a_2\in A ρ(f(a1),f(a2)≤qρ(a1,a2),∀a1,a2∈A
则称为压缩映射
压缩映射原理
设 A A A 为完备度量空间 X X X 中的闭集, f : A → A f:A\to A f:A→A 为压缩映射,则存在唯一的点 a ∈ A a\in A a∈A,使得 f ( a ) = a f(a)=a f(a)=a(不动点)
证明
任取
a
0
∈
A
a_0\in A
a0∈A,递归的定义
A
A
A 中点列
{
a
n
}
\{a_n\}
{an}如下:
a
n
=
f
(
a
n
−
1
)
,
n
=
1
,
2
,
⋯
a_n=f(a_{n-1}),\quad n=1,2,\cdots
an=f(an−1),n=1,2,⋯
则
ρ
(
a
n
+
1
,
a
n
)
=
ρ
(
f
(
a
n
)
−
f
(
a
n
−
1
)
)
≤
q
ρ
(
a
n
,
a
n
−
1
)
,
∀
n
≥
1
\rho(a_{n+1},a_n)=\rho(f(a_n)-f(a_{n-1}))\le q\rho(a_n,a_{n-1}),\forall n\ge1
ρ(an+1,an)=ρ(f(an)−f(an−1))≤qρ(an,an−1),∀n≥1
从而有
ρ
(
a
n
+
1
,
a
n
)
≤
q
ρ
(
a
n
,
a
n
−
1
)
≤
q
2
ρ
(
a
n
−
1
,
a
n
−
2
)
≤
⋯
≤
q
n
ρ
(
a
1
,
a
0
)
ρ
(
a
m
,
a
n
)
≤
ρ
(
a
m
,
a
m
−
1
)
+
ρ
(
a
m
−
1
,
a
m
−
2
)
+
⋯
+
ρ
(
a
n
+
1
,
a
n
)
≤
(
q
m
−
1
+
q
m
−
2
+
⋯
+
q
n
)
ρ
(
a
1
,
a
0
)
≤
q
n
1
−
q
ρ
(
a
1
,
a
0
)
→
0
,
(
m
>
n
,
n
→
∞
)
\begin{aligned} \rho(a_{n+1},a_n)&\leq q\rho(a_n,a_{n-1})\le q^2\rho(a_{n-1},a_{n-2})\le\cdots\le q^n\rho(a_1,a_0)\\ \rho(a_m,a_n)&\le\rho(a_m,a_{m-1})+\rho(a_{m-1},a_{m-2})+\cdots+\rho(a_{n+1},a_n)\\ &\le(q^{m-1}+q^{m-2}+\cdots+q^n)\rho(a_1,a_0)\\ &\le\frac{q^n}{1-q}\rho(a_1,a_0)\to0,(m>n,n\to\infty) \end{aligned}
ρ(an+1,an)ρ(am,an)≤qρ(an,an−1)≤q2ρ(an−1,an−2)≤⋯≤qnρ(a1,a0)≤ρ(am,am−1)+ρ(am−1,am−2)+⋯+ρ(an+1,an)≤(qm−1+qm−2+⋯+qn)ρ(a1,a0)≤1−qqnρ(a1,a0)→0,(m>n,n→∞)
这说明
{
a
n
}
\{a_n\}
{an} 为 Cauchy 列. 设其极限为
a
a
a,则
a
∈
A
a\in A
a∈A,由三角不等式得
ρ
(
f
(
a
)
,
a
)
≤
ρ
(
f
(
a
)
,
f
(
a
n
)
)
+
ρ
(
f
(
a
n
)
,
a
)
≤
q
ρ
(
a
,
a
n
)
+
ρ
(
a
n
+
1
,
a
)
≤
ε
(
n
→
∞
)
\begin{aligned} \rho(f(a),a)&\le\rho(f(a),f(a_n))+\rho(f(a_n),a)\\ &\le q\rho(a,a_n)+\rho(a_{n+1},a)\\ &\le \varepsilon\qquad(n\to\infty) \end{aligned}
ρ(f(a),a)≤ρ(f(a),f(an))+ρ(f(an),a)≤qρ(a,an)+ρ(an+1,a)≤ε(n→∞)
这说明
f
(
a
)
=
a
f(a)=a
f(a)=a
唯一性:若
f
(
b
)
=
b
f(b)=b
f(b)=b ,则
ρ
(
a
,
b
)
=
ρ
(
f
(
a
)
,
f
(
b
)
)
≤
q
ρ
(
a
,
b
)
\rho(a,b)=\rho(f(a),f(b))\le q\rho (a,b)
ρ(a,b)=ρ(f(a),f(b))≤qρ(a,b)
这说明
ρ
(
a
,
b
)
=
0
\rho(a,b)=0
ρ(a,b)=0 ,从而
a
=
b
a=b
a=b