均匀带电直线外一点的场强

真空中有均匀带电直线,长为LLL,总电量为qqq
线外有一点PPP,离开直线的垂直距离为aaaPPP点和直线两端连线的夹角分别为θ1\theta_1θ1θ2\theta_2θ2 。求PPP点的场强。
(设电荷线密度为λ\lambdaλ

--------------------------------------------------------------------------------------------------------在这里插入图片描述
取一电荷元:dq=λdxdq=\lambda dxdq=λdx

dEx=λ dx4πεor2cos⁡θ(1){\bf{d}}E_x = \frac{{\lambda \,{\bf{d}}x}}{{4\pi {\varepsilon _o}{r^2}}}\cos\theta\tag{1}dEx=4πεor2λdxcosθ(1)
dEy=λ dx4πεor2sin⁡θ(2){\bf{d}}E_y = \frac{{\lambda \,{\bf{d}}x}}{{4\pi {\varepsilon _o}{r^2}}}\sin\theta\tag{2}dEy=4πεor2λdxsinθ(2)

  • 我们首先处理式子(1):
    Ex=∫θ1θ2λ dx4πεor2cos⁡θ=∫θ1θ2λ cos⁡θ4πεor2dx(1.1)\begin{aligned} E_x&=\int_{\theta_1}^{\theta_2}\frac{{\lambda \,{\bf{d}}x}}{{4\pi {\varepsilon _o}{r^2}}}\cos\theta\\ &=\int_{\theta_1}^{\theta_2}\frac{\lambda \,\cos\theta}{4\pi {\varepsilon _o}{r^2}}\bf{d}x\\ \end{aligned}\tag{1.1} Ex=θ1θ24πεor2λdxcosθ=θ1θ24πεor2λcosθdx(1.1)
    其中x=−atan⁡θx = -\frac{a}{\tan\theta}x=tanθa,r=asinθr=\frac{a}{sin\theta}r=sinθa

则(1.1)可化为:
Ex=∫θ1θ2λ cos⁡θ4πεor2dx=∫θ1θ2λcos⁡θ4πε0a2sin⁡2θasin⁡2θdθ=∫θ1θ2λcos⁡θ4πε0adθ=λ4πε0a(sin⁡θ2−sin⁡θ1)(1.2)\begin{aligned} E_x &=\int_{\theta_1}^{\theta_2}\frac{\lambda \,\cos\theta}{4\pi {\varepsilon _o}{r^2}}\bf{d}x\\ &=\int_{\theta_1}^{\theta_2}\frac{\lambda\cos\theta}{4\pi\varepsilon_0\frac{a^2}{\sin^2\theta}}\frac{a}{\sin^2\theta}d\theta\\ &=\int_{\theta_1}^{\theta_2}\frac{\lambda\cos\theta}{4\pi\varepsilon_0a}d\theta\\ &=\frac{\lambda}{4\pi\varepsilon_0a}(\sin\theta_2-\sin\theta_1)\tag{1.2} \end{aligned} Ex=θ1θ24πεor2λcosθdx=θ1θ24πε0sin2θa2λcosθsin2θadθ=θ1θ24πε0aλcosθdθ=4πε0aλ(sinθ2sinθ1)(1.2)

  • 现在处理式子(2):
    Ey=∫θ1θ2λ dx4πεor2sin⁡θ=∫θ1θ2λ sin⁡θ4πεor2dx(2.1)\begin{aligned} E_y&=\int_{\theta_1}^{\theta_2}\frac{{\lambda \,{\bf{d}}x}}{{4\pi {\varepsilon _o}{r^2}}}\sin\theta\\ &=\int_{\theta_1}^{\theta_2}\frac{\lambda \,\sin\theta}{4\pi {\varepsilon _o}{r^2}}\bf{d}x\\ \end{aligned}\tag{2.1} Ey=θ1θ24πεor2λdxsinθ=θ1θ24πεor2λsinθdx(2.1)
    其中x=−atan⁡θx = -\frac{a}{\tan\theta}x=tanθa,r=asinθr=\frac{a}{sin\theta}r=sinθa

则(1.1)可化为:
Ey=∫θ1θ2λ sin⁡θ4πεor2dx=∫θ1θ2λsin⁡θ4πε0a2sin⁡2θasin⁡2θdθ=∫θ1θ2λsin⁡θ4πε0adθ=λ4πε0a(cos⁡θ1−cos⁡θ2)(2.2)\begin{aligned} E_y &=\int_{\theta_1}^{\theta_2}\frac{\lambda \,\sin\theta}{4\pi {\varepsilon _o}{r^2}}\bf{d}x\\ &=\int_{\theta_1}^{\theta_2}\frac{\lambda\sin\theta}{4\pi\varepsilon_0\frac{a^2}{\sin^2\theta}}\frac{a}{\sin^2\theta}d\theta\\ &=\int_{\theta_1}^{\theta_2}\frac{\lambda\sin\theta}{4\pi\varepsilon_0a}d\theta\\ &=\frac{\lambda}{4\pi\varepsilon_0a}(\cos\theta_1-\cos\theta_2)\tag{2.2} \end{aligned} Ey=θ1θ24πεor2λsinθdx=θ1θ24πε0sin2θa2λsinθsin2θadθ=θ1θ24πε0aλsinθdθ=4πε0aλ(cosθ1cosθ2)(2.2)
特别的,当通电导线无限长时,θ1=0\theta_1=0θ1=0,θ2=π\theta_2=\piθ2=π
Ex=0Ey=λ2πε0a \begin{aligned} E_x &=0\\ E_y&=\frac{\lambda}{2\pi\varepsilon_0a} \end{aligned} ExEy=0=2πε0aλ

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值