真空中有均匀带电直线,长为LLL,总电量为qqq。
线外有一点PPP,离开直线的垂直距离为aaa,PPP点和直线两端连线的夹角分别为θ1\theta_1θ1和θ2\theta_2θ2 。求PPP点的场强。
(设电荷线密度为λ\lambdaλ)
--------------------------------------------------------------------------------------------------------
取一电荷元:dq=λdxdq=\lambda dxdq=λdx
则
dEx=λ dx4πεor2cosθ(1){\bf{d}}E_x = \frac{{\lambda \,{\bf{d}}x}}{{4\pi {\varepsilon _o}{r^2}}}\cos\theta\tag{1}dEx=4πεor2λdxcosθ(1)
dEy=λ dx4πεor2sinθ(2){\bf{d}}E_y = \frac{{\lambda \,{\bf{d}}x}}{{4\pi {\varepsilon _o}{r^2}}}\sin\theta\tag{2}dEy=4πεor2λdxsinθ(2)
- 我们首先处理式子(1):
Ex=∫θ1θ2λ dx4πεor2cosθ=∫θ1θ2λ cosθ4πεor2dx(1.1)\begin{aligned} E_x&=\int_{\theta_1}^{\theta_2}\frac{{\lambda \,{\bf{d}}x}}{{4\pi {\varepsilon _o}{r^2}}}\cos\theta\\ &=\int_{\theta_1}^{\theta_2}\frac{\lambda \,\cos\theta}{4\pi {\varepsilon _o}{r^2}}\bf{d}x\\ \end{aligned}\tag{1.1} Ex=∫θ1θ24πεor2λdxcosθ=∫θ1θ24πεor2λcosθdx(1.1)
其中x=−atanθx = -\frac{a}{\tan\theta}x=−tanθa,r=asinθr=\frac{a}{sin\theta}r=sinθa
则(1.1)可化为:
Ex=∫θ1θ2λ cosθ4πεor2dx=∫θ1θ2λcosθ4πε0a2sin2θasin2θdθ=∫θ1θ2λcosθ4πε0adθ=λ4πε0a(sinθ2−sinθ1)(1.2)\begin{aligned}
E_x
&=\int_{\theta_1}^{\theta_2}\frac{\lambda \,\cos\theta}{4\pi {\varepsilon _o}{r^2}}\bf{d}x\\
&=\int_{\theta_1}^{\theta_2}\frac{\lambda\cos\theta}{4\pi\varepsilon_0\frac{a^2}{\sin^2\theta}}\frac{a}{\sin^2\theta}d\theta\\
&=\int_{\theta_1}^{\theta_2}\frac{\lambda\cos\theta}{4\pi\varepsilon_0a}d\theta\\
&=\frac{\lambda}{4\pi\varepsilon_0a}(\sin\theta_2-\sin\theta_1)\tag{1.2}
\end{aligned}
Ex=∫θ1θ24πεor2λcosθdx=∫θ1θ24πε0sin2θa2λcosθsin2θadθ=∫θ1θ24πε0aλcosθdθ=4πε0aλ(sinθ2−sinθ1)(1.2)
- 现在处理式子(2):
Ey=∫θ1θ2λ dx4πεor2sinθ=∫θ1θ2λ sinθ4πεor2dx(2.1)\begin{aligned} E_y&=\int_{\theta_1}^{\theta_2}\frac{{\lambda \,{\bf{d}}x}}{{4\pi {\varepsilon _o}{r^2}}}\sin\theta\\ &=\int_{\theta_1}^{\theta_2}\frac{\lambda \,\sin\theta}{4\pi {\varepsilon _o}{r^2}}\bf{d}x\\ \end{aligned}\tag{2.1} Ey=∫θ1θ24πεor2λdxsinθ=∫θ1θ24πεor2λsinθdx(2.1)
其中x=−atanθx = -\frac{a}{\tan\theta}x=−tanθa,r=asinθr=\frac{a}{sin\theta}r=sinθa
则(1.1)可化为:
Ey=∫θ1θ2λ sinθ4πεor2dx=∫θ1θ2λsinθ4πε0a2sin2θasin2θdθ=∫θ1θ2λsinθ4πε0adθ=λ4πε0a(cosθ1−cosθ2)(2.2)\begin{aligned}
E_y
&=\int_{\theta_1}^{\theta_2}\frac{\lambda \,\sin\theta}{4\pi {\varepsilon _o}{r^2}}\bf{d}x\\
&=\int_{\theta_1}^{\theta_2}\frac{\lambda\sin\theta}{4\pi\varepsilon_0\frac{a^2}{\sin^2\theta}}\frac{a}{\sin^2\theta}d\theta\\
&=\int_{\theta_1}^{\theta_2}\frac{\lambda\sin\theta}{4\pi\varepsilon_0a}d\theta\\
&=\frac{\lambda}{4\pi\varepsilon_0a}(\cos\theta_1-\cos\theta_2)\tag{2.2}
\end{aligned}
Ey=∫θ1θ24πεor2λsinθdx=∫θ1θ24πε0sin2θa2λsinθsin2θadθ=∫θ1θ24πε0aλsinθdθ=4πε0aλ(cosθ1−cosθ2)(2.2)
特别的,当通电导线无限长时,θ1=0\theta_1=0θ1=0,θ2=π\theta_2=\piθ2=π
Ex=0Ey=λ2πε0a
\begin{aligned}
E_x &=0\\
E_y&=\frac{\lambda}{2\pi\varepsilon_0a}
\end{aligned}
ExEy=0=2πε0aλ
754

被折叠的 条评论
为什么被折叠?



