求Ck=∑k<=i<na[i]∗b[i−k]就是求卷积。,我们把b[i]变成b[n-i-1],记a*b的结果为p,则
∑k<=i<na[i]∗b[n−(i−k)−1]=p[n+k−1],最后Ck=p[n+k−1]
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <complex>
using namespace std;
#define pi acos(-1)
#define ll long long
#define inf 0x3f3f3f3f
#define N 270000
typedef complex<double> E;
inline int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x*f;
}
int n,m,L=0,R[N];
E a[N],b[N];
inline void fft(E *a,int f){
for(int i=0;i<n;++i) if(i<R[i]) swap(a[i],a[R[i]]);
for(int i=1;i<n;i<<=1){
E wn(cos(pi/i),f*sin(pi/i));
for(int j=0;j<n;j+=i<<1){
E w(1,0);
for(int k=0;k<i;++k,w*=wn){
E x=a[j+k],y=w*a[j+k+i];
a[j+k]=x+y;a[j+k+i]=x-y;
}
}
}if(f==-1) for(int i=0;i<n;++i) a[i]/=n;
}
int main(){
// freopen("a.in","r",stdin);
n=read();
for(int i=0;i<n;++i) a[i]=read(),b[n-i-1]=read();
m=n+n;for(n=1;n<=m;n<<=1) ++L;
for(int i=0;i<n;++i) R[i]=(R[i>>1]>>1)|(i&1)<<(L-1);
fft(a,1);fft(b,1);
for(int i=0;i<n;++i) a[i]*=b[i];
fft(a,-1);m/=2;
for(int i=m-1;i<m+m-1;++i) printf("%d\n",(int)(a[i].real()+0.1));
return 0;
}