【漫话机器学习系列】011.Bagging方法 VS Dropout方法

Bagging 和 Dropout 是两种用于提高模型性能、减少过拟合的方法,但它们的工作原理和适用场景有所不同。以下是两者的详细对比:


 1. 方法背景

Bagging
  • 全称:Bootstrap Aggregating。
  • 背景:一种集成学习方法,用于提升基学习器的稳定性和准确性。
  • 原理:通过对数据集进行有放回采样,训练多个基学习器(通常是弱模型,如决策树),然后对这些学习器的结果进行聚合(如多数投票或平均)。
Dropout
  • 背景:一种正则化技术,用于防止神经网络中的过拟合。
  • 原理:在每次训练迭代时,随机“丢弃”一部分神经元(即暂时将它们的输出设为零),使模型在训练时不会过分依赖某些特定神经元,从而增强模型的泛化能力。

2. 核心思想

特性 Bagging Dropout
随机性来源 数据集的随机有放回采样(Bootstrap)。<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值