【机器学习】机器学习的基本分类-强化学习-Deep Q-Network (DQN)

Deep Q-Network (DQN) 是 Q-Learning 的扩展版本,通过使用深度神经网络来逼近 Q 函数,解决了 Q-Learning 在高维状态空间上的适用性问题。DQN 是深度强化学习的里程碑之一,其突破性地在 Atari 游戏上表现出了超过人类玩家的水平。


DQN 的核心思想

DQN 使用一个神经网络 Q_\theta(s, a) 来逼近状态-动作值函数 Q(s, a)。通过不断地更新网络参数 θ\thetaθ,使其逼近真实的 Q^*(s, a)
其主要改进在于解决了传统 Q-Learning 中 不稳定性发散性 的问题。


DQN 的改进与关键技术

  1. 经验回放(Experience Replay)

    • 将智能体的交互数据存储到一个 回放缓冲区(Replay Buffer)中。
    • 随机采样小批量数据进行训练,以减少样本之间的相关性,提高数据利用率。
  2. 目标网络(Target Network)

    • 引入一个与主网络
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值