【机器学习】机器学习的基本分类-强化学习-Q-Learning

机器学习之Q-Learning算法详解

Q-Learning 的详细讲解

Q-Learning 是一种经典的强化学习算法,用于解决离散状态和动作空间的强化学习问题。其目标是找到一个最优策略,使智能体能够在与环境的交互中最大化累积奖励。


核心思想

通过迭代更新动作值函数 Q(s, a),使其收敛到最优值 Q^*(s, a)。最优值函数 Q^*(s, a) 满足 Bellman 最优方程:

Q^*(s, a) = \mathbb{E}_{s'} \left[ R + \gamma \max_{a'} Q^*(s', a') \right]

这里:

  • s:当前状态
  • a:当前动作
  • s':下一状态
  • R:即时奖励
  • \gamma:折扣因子

智能体根据 Q(s, a) 构造策略 \pi(s),选择使 Q(s, a) 最大的动作。


算法步骤

  1. 初始化

    • 初始化 Q(s, a) = 0 或随机值,表示每个状态-动作对的初始估计值。
    • 设置学习率 \alpha 和折扣因子 \gamma
  2. 循环更新(直到收敛或达到最大迭代次数)

    1. 从环境中获取当前状态 s
    2. 使用 探索与利用策略 选择动作 a
      • 探索:随机选择动作(以一定概率 \epsilon)。
      • 利用:选择使 Q(s, a) 最大的动作。
    3. 执行动作 aaa,获得即时奖励 R 和下一状态 s'
    4. 更新 Q(s, a)

                 Q(s, a) \leftarrow Q(s, a) + \alpha \left[ R + \gamma \max_{a'} Q(s', a') - Q(s, a) \right]
    5. 将状态更新为 s',重复步骤 2。
  3. 输出最终策略

    \pi(s) = \arg\max_a Q(s, a)

公式解释

  • 学习率 \alpha:决定新信息对更新的影响程度,取值范围为 0 < \alpha \leq 1

    • \alpha \to 1:仅考虑最新经验,忽略历史信息。
    • \alpha \to 0:忽略最新经验,几乎不更新。
  • 折扣因子 \gamma:衡量未来奖励的重要性,取值范围为 0 \leq \gamma \leq 1

    • \gamma \to 1:更加关注长期回报。
    • \gamma \to 0:只关心即时奖励。
  • 更新规则:利用新的经验 R + \gamma \max_{a'} Q(s', a') 修正当前 Q(s, a),使其逐渐逼近真实值。


优缺点

优点
  1. 模型无关:不需要知道环境的状态转移概率 P(s'|s, a)
  2. 简单直观:易于理解和实现。
  3. 保证收敛:在有限状态和动作空间下,适当设置 \alpha\gamma 时,Q(s, a) 会收敛到 Q^*(s, a)
缺点
  1. 状态空间限制:难以扩展到连续或高维状态空间。
  2. 动作选择问题:需要设计探索与利用的平衡机制(如 \epsilon-贪婪策略)。
  3. 数据效率低:每次更新只基于一个样本。

举例说明

假设一个 3x3 的网格世界,智能体可以选择四个动作:向上、向下、向左、向右。目标是从左上角移动到右下角,获得最大的累积奖励。

  1. 初始化:设置所有 Q(s, a) = 0
  2. 运行算法:智能体不断探索不同路径,基于即时奖励和折扣因子更新 Q(s, a)
  3. 收敛:最终 Q(s, a) 收敛,智能体学会最佳策略,如“向右、向下”到达目标。

改进版本

1. SARSA(State-Action-Reward-State-Action)
  • 更新规则:

                   Q(s, a) \leftarrow Q(s, a) + \alpha \left[ R + \gamma Q(s', a') - Q(s, a) \right]
  • 与 Q-Learning 的区别:SARSA 在更新时使用智能体实际选择的动作 a',而不是使用最大化的 \max_{a'} Q(s', a')
2. Deep Q-Learning (DQN)
  • 使用神经网络逼近 Q(s, a),解决高维状态空间问题。
  • 引入 经验回放目标网络 提高稳定性。

应用场景

  1. 机器人路径规划:如迷宫求解、机器人避障。
  2. 游戏 AI:学习游戏中的最优策略。
  3. 推荐系统:优化用户推荐序列。
  4. 动态资源分配:如网络带宽、云计算资源分配。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值