原创 | 文 BFT机器人

01
摘要
论文研究了室内和室外场景中基于RGBD数据的3D目标检测。论文的方法不仅仅依赖于3D方案,而是利用成熟的2D对象检测器和先进的3D深度学习进行对象定位,即使是小对象也能实现高效率和高召回。
直接在原始点云中学习,可以在强遮挡或非常稀疏的点下也能够精确地估计3D边界框。在KITTI和SUN RGB-D 3D检测基准测试中,此方法展现出显著的优势,不仅具有实时能力,而且在性能上表现出色。
02
介绍
这篇论文介绍了一种用于从RGB-D数据中进行3D物体检测的新框架,称为"Frustum PointNets"。该方法通过将深度图像转换为3D点云并利用PointNets网络处理点云数据,实现了在三维空间中对物体进行分类和定位的任务。
与以往的方法不同,该方法以3D为中心,直接在3D空间中操作点云数据,而不是将RGB-D数据视为2D地图。通过在3D坐标上连续应用变换,点云被对齐成一系列更受约束和规范的帧,使得3D几何图案更加明显,从而更容易进行3D物体检测。此外,该方法可以更好地利用3D空间的几何和拓扑结构,使得学习者可以更自然地参数化和捕获许多几何结构,如重复、平面性和对称性。
论文展示了该方法在KITTI 3D物体检测和鸟瞰图检测等基准测试中取得了领先地位。与之前的技术相比,"Frustum PointNets"在3D汽车AP上的效率提高了8.04%,运行速度高达5 fps。同时,在室内RGBD数据上,该方法在SUN-RGBD基准测试中也取得了显著的性能提升。
论文的主要贡献包括提出了新的框架"Frustum PointNets",展示了如何训练3D物体探测器并在基准测试中实现了最先进的性能,同时提供了广泛的定量评估和定性结果来验证该方法的优势和局限性。
二维目标检测器:

文章介绍了FrustumPointNets框架,该框架结合2D对象检测器和3D深度学习,实现室内和室外场景的高效高召回3D目标检测。通过将深度图像转换为3D点云并利用PointNets,方法能处理遮挡和稀疏点云,实现实时性能,并在KITTI和SUNRGB-D基准上展现优越性能。
最低0.47元/天 解锁文章
9217

被折叠的 条评论
为什么被折叠?



