四元素与欧拉角之间的转换
在3D图形学中,最常用的旋转表示方法便是四元数和欧拉角,比起矩阵来具有节省存储空间和方便插值的优点。本文主要归纳了两种表达方式的转换,计算公式采用3D笛卡尔坐标系:
定义分别为绕Z轴、Y轴、X轴的旋转角度,如果用Tait-Bryan angle表示,分别为Yaw、Pitch、Roll。
一、四元数的定义
二.通过旋转轴和绕该轴旋转的角度可以构造一个四元数:
其中是绕旋转轴旋转的角度,
为旋转轴在x,y,z方向的分量(由此确定了旋转轴)。
二、欧拉角到四元数的转换
三、四元数到欧拉角的转换
arctan和arcsin的结果是,这并不能覆盖所有朝向(对于
角
的取值范围已经满足),因此需要用atan2来代替arctan。
四.代码如下:
#include <iostream>
#include <math.h>
#include <stdio.h>
using namespace std;
double pi=3.141592654;
void quaternionToeularangle(double &qx,double &qy,double &qz,double &qw)
{
double roll_x,pitch_y,yaw_z,yaw_z_angle;
yaw_z=std::atan2(2*(qw*qz+qx*qy),1-2*(qy*qy+qz*qz));
pitch_y=std::asin(2*(qw*qy-qx*qz));
roll_x=std::atan2(2*(qw*qx+qy*qz),1-2*(qy*qy+qx*qx));
cout<<"roll_x="<<roll_x<<endl;
cout<<"pitch_y="<<pitch_y<<endl;
cout<<"yaw_z="<<yaw_z<<endl;
}
void eularangleToquaternion(double &roll,double &pitch,double &yaw)
{
double cosroll,sinroll,cospitch,sinpitch,cosyaw,sinyaw,qw,qx,qy,qz;
cosroll=std::cos(roll*0.5f);
sinroll=std::sin(roll*0.5f);
cospitch=std::cos(pitch*0.5f);
sinpitch=std::sin(pitch*0.5f);
cosyaw=std::cos(yaw*0.5f);
sinyaw=std::sin(yaw*0.5f);
qw=cosroll*cospitch*cosyaw+sinroll*sinpitch*sinyaw;
qx=sinroll*cospitch*cosyaw-cosroll*sinpitch*sinyaw;
qy=cosroll*sinpitch*cosyaw+sinroll*cospitch*sinyaw;
qz=cosroll*cospitch*sinyaw-sinroll*sinpitch*cosyaw;
cout<<"qx="<<qx<<endl;
cout<<"qy="<<qy<<endl;
cout<<"qz="<<qz<<endl;
cout<<"qw="<<qw<<endl;
}
int main(int argc, char **argv)
{
ros::init(argc, argv, "quaternionToeularangle");
ros::NodeHandle n;
while(n.ok())
{
double qx,qy,qz,qw,roll,pitch,yaw;
// double roll_angle,pitch_angle,yaw_angle;
cout<<"please input quaternion"<<endl;
cin>>qx>>qy>>qz>>qw;
quaternionToeularangle(qx,qy,qz,qw);
cout<<"please input eularangle"<<endl;
cin>>roll>>pitch>>yaw;
eularangleToquaternion(roll,pitch,yaw);
}
return 0;
}