I am going to my home. There are many cities and many bi-directional roads between them. The cities are numbered from 0 to n-1 and each road has a cost. There are m roads. You are given the number of my city t where I belong. Now from each city you have to find the minimum cost to go to my city. The cost is defined by the cost of the maximum road you have used to go to my city.
For example, in the above picture, if we want to go from 0 to 4, then we can choose
1) 0 - 1 - 4 which costs 8, as 8 (1 - 4) is the maximum road we used
2) 0 - 2 - 4 which costs 9, as 9 (0 - 2) is the maximum road we used
3) 0 - 3 - 4 which costs 7, as 7 (3 - 4) is the maximum road we used
So, our result is 7, as we can use 0 - 3 - 4.
Input
Input starts with an integer T (≤ 20), denoting the number of test cases.
Each case starts with a blank line and two integers n (1 ≤ n ≤ 500) and m (0 ≤ m ≤ 16000). The next m lines, each will contain three integers u, v, w (0 ≤ u, v < n, u ≠ v, 1 ≤ w ≤ 20000) indicating that there is a road between u and v with cost w. Then there will be a single integer t (0 ≤ t < n). There can be multiple roads between two cities.
Output
For each case, print the case number first. Then for all the cities (from 0 to n-1) you have to print the cost. If there is no such path, print ‘Impossible’.
Sample Input
Output for Sample Input
2
5 6
0 1 5
0 1 4
2 1 3
3 0 7
3 4 6
3 1 8
1
5 4
0 1 5
0 1 4
2 1 3
3 4 7
1
Case 1:
4
0
3
7
7
Case 2:
4
0
3
Impossible
Impossible
Note
Dataset is huge, user faster I/O methods.
dijkstra算法变形
/*************************************************************************
> File Name: LightOJ1002.cpp
> Author: ALex
> Mail: zchao1995@gmail.com
> Created Time: 2015年06月02日 星期二 19时34分01秒
************************************************************************/
#include <functional>
#include <algorithm>
#include <iostream>
#include <fstream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <queue>
#include <stack>
#include <map>
#include <bitset>
#include <set>
#include <vector>
using namespace std;
const double pi = acos(-1.0);
const int inf = 0x3f3f3f3f;
const double eps = 1e-15;
typedef long long LL;
typedef pair <int, int> PLL;
static const int N = 555;
int dist[N];
priority_queue < PLL, vector<PLL>, greater<PLL> > qu;
struct node {
int nxt;
int w;
int to;
}edge[40000];
bool vis[555];
int head[N], tot;
void addedge(int from, int to, int w) {
edge[tot].to = to;
edge[tot].w = w;
edge[tot].nxt = head[from];
head[from] = tot++;
}
void Dijkstra(int u, int n) {
while (!qu.empty()) {
qu.pop();
}
for (int i = 0; i < n; ++i) {
dist[i] = inf;
}
dist[u] = 0;
qu.push(make_pair(dist[u], u));
while (!qu.empty()) {
PLL tmp = qu.top();
qu.pop();
int s = tmp.second;
int d = tmp.first;
for (int i = head[s]; ~i; i = edge[i].nxt) {
int t = edge[i].to;
int w = edge[i].w;
if (dist[t] > max(d, w)) {
dist[t] = max(d, w);
qu.push(make_pair(dist[t], t));
}
}
}
}
int main() {
int t, icase = 1;
scanf("%d", &t);
while (t--) {
int n, m;
scanf("%d%d", &n, &m);
for (int i = 0; i < n; ++i) {
head[i] = -1;
}
tot = 0;
int u, v, w;
for (int i = 1; i <= m; ++i) {
scanf("%d%d%d", &u, &v, &w);
addedge(u, v, w);
addedge(v, u, w);
}
scanf("%d", &u);
Dijkstra(u, n);
printf("Case %d:\n", icase++);
for (int i = 0; i < n; ++i) {
if (dist[i] == inf) {
printf("Impossible\n");
}
else {
printf("%d\n", dist[i]);
}
}
}
return 0;
}

本文详细介绍了最小成本路径算法的基本概念、实现步骤及应用案例,并通过代码示例展示了如何利用Dijkstra算法求解从任意城市到指定城市的最短路径成本。文中包括输入输出规范、算法变形以及实例分析。
2241

被折叠的 条评论
为什么被折叠?



