lightoj 1002 变形dijkstra

本文介绍了一个经典的图论问题——寻找从各个城市到特定城市的最大边最小值路径算法。通过使用邻接矩阵和改进的迪杰斯特拉算法实现,解决了如何找到各节点到目标节点之间的路径成本问题,并给出了具体的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

I am going to my home. There are many cities and many bi-directional roads between them. The cities are numbered from 0 to n-1 and each road has a cost. There are m roads. You are given the number of my city t where I belong. Now from each city you have to find the minimum cost to go to my city. The cost is defined by the cost of the maximum road you have used to go to my city.

For example, in the above picture, if we want to go from 0 to 4, then we can choose

1) 0 - 1 - 4 which costs 8, as 8 (1 - 4) is the maximum road we used
2) 0 - 2 - 4 which costs 9, as 9 (0 - 2) is the maximum road we used
3) 0 - 3 - 4 which costs 7, as 7 (3 - 4) is the maximum road we used

So, our result is 7, as we can use 0 - 3 - 4.

Input
Input starts with an integer T (≤ 20), denoting the number of test cases.

Each case starts with a blank line and two integers n (1 ≤ n ≤ 500) and m (0 ≤ m ≤ 16000). The next m lines, each will contain three integers u, v, w (0 ≤ u, v < n, u ≠ v, 1 ≤ w ≤ 20000) indicating that there is a road between u and v with cost w. Then there will be a single integer t (0 ≤ t < n). There can be multiple roads between two cities.

Output
For each case, print the case number first. Then for all the cities (from 0 to n-1) you have to print the cost. If there is no such path, print ‘Impossible’.

Sample Input
Output for Sample Input
2

5 6
0 1 5
0 1 4
2 1 3
3 0 7
3 4 6
3 1 8
1

5 4
0 1 5
0 1 4
2 1 3
3 4 7
1
Case 1:
4
0
3
7
7
Case 2:
4
0
3
Impossible
Impossible

几乎就是裸题….
用这个熟悉一下最短路

#include<iostream>
#include<cstdio>
#include<cmath>
#include<memory.h>
#include<algorithm>
using namespace std;
int tu[500][500],n,m,dis[500],s;
bool yijing[500];
int inf=0x3f3f3f3f;
int main()
{
    int T;
    cin>>T;
    int u=0;
    while(T--)
    {
        memset(tu,0x3f,sizeof(tu));
        memset(dis,0x3f,sizeof(dis));
        memset(yijing,0,sizeof(yijing));
        cin>>n>>m;
        int l,q,w;
        while(m--)
        {
            cin>>q>>l>>w;
            tu[q][l]=min(tu[q][l],w);
            tu[l][q]=tu[q][l];
        }
        for(int a=0;a<n;a++)tu[a][a]=0;
        cin>>s;
        for(int a=0;a<n;a++)dis[a]=tu[a][s];
        dis[s]=0;
        yijing[s]=1;
        for(int a=0;a<n-1;a++)
        {
            int zuobiao,daxiao=inf;
            for(int b=0;b<n;b++)
            {
                if(dis[b]<daxiao&&yijing[b]==0)
                {
                    zuobiao=b;
                    daxiao=dis[b];
                }
            }
            yijing[zuobiao]=1;
            for(int b=0;b<n;b++)
            {
                if(!yijing[b]&&tu[b][zuobiao]!=inf)
                {
                    dis[b]=min(dis[b],max(dis[zuobiao],tu[zuobiao][b]));
                }
            }
        }
        printf("Case %d:\n",++u);
        for(int a=0;a<n;a++)
        {
            if(dis[a]==inf)
            {
                cout<<"Impossible"<<endl;
                continue;
            }
            cout<<dis[a]<<endl;
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值