同余(Congruence Modulo)是数论中的一种等价关系。给定一个正整数 m m m ,如果用 m m m去除任意两个正整数 a a a与 b b b所得到的余数相同,我们就称 a , b a,b a,b对模 m m m同余,记为 a ≡ b (mod m ) a\equiv b\text{ (mod } m) a≡b (mod m),否则称 a , b a,b a,b对模 m m m不同余,记为 a ≢ b (mod m ) a\not\equiv b\text{ (mod } m) a≡b (mod m),其中 m m m称作模。
- 性质1(反身性): a ≡ b (mod m ) a\equiv b\text{ (mod } m) a≡b (mod m)
- 性质2(对称性):若 a ≡ b (mod m ) a\equiv b\text{ (mod } m) a≡b (mod m),那么 b ≡ a (mod m ) b\equiv a\text{ (mod } m) b≡a (mod m)
- 性质3(传递性):若 a ≡ b (mod m ) a\equiv b\text{ (mod } m) a≡b (mod m),那么 b ≡ c (mod m ) → a ≡ c (mod m ) b\equiv c\text{ (mod } m) \rightarrow a\equiv c\text{ (mod } m) b≡c (mod m)→a≡c (mod m)
- 性质4(可加减性):若 a ≡ b (mod m ) a\equiv b\text{ (mod } m) a≡b (mod m), c ≡ d (mod m ) c\equiv d\text{ (mod } m) c≡d (mod m),那么 a ± c ≡ b ± d (mod m ) a\pm c \equiv b \pm d\text{ (mod } m) a±c≡b±d (mod m)
证明:设 a = V a b + K a ∗ m , b = V a b + K b ∗ m , c = V c d + K c ∗ m , d = V c d + K d ∗ m a = V_{ab} + K_a*m,\ b= V_{ab} + K_b*m,\ c = V_{cd} + K_c*m,\ d = V_{cd} + K_d*m a=Vab+Ka∗m, b=Vab+Kb∗m, c=Vcd+Kc∗m, d=Vcd+Kd∗m,则 ( a ± c ) % m = ( A ± C ) (a \pm c)\%m=(A\pm C) (a±c)%m=(A±C), ( b ± d ) % m = ( A ± C ) (b\pm d)\% m=(A\pm C) (b±d)%m=(A±C),即 a ± c ≡ b ± d (mod m ) a\pm c\equiv b\pm d\text{ (mod } m) a±c≡b±d (mod m)
- 性质5(可乘性):若 a ≡ b (mod m ) a\equiv b\text{ (mod } m) a≡b (mod m), c ≡ d (mod m ) c\equiv d\text{ (mod } m) c≡d (mod m),那么 a c ≡ b d (mod m ) ac\equiv bd\text{ (mod } m) ac≡bd (mod m)
证明:设 a = V a b + K a ∗ m , b = V a b + K b ∗ m , c = V c d + K c ∗ m , d = V c d + K d ∗ m a = V_{ab} + K_a*m,\ b= V_{ab} + K_b*m,\ c = V_{cd} + K_c*m,\ d = V_{cd} + K_d*m a=Vab+Ka∗m, b=Vab+Kb∗m, c=Vcd+Kc∗m, d=Vcd+Kd∗m,则 a c = ( V a b + K a ∗ m ) ( V c d + K c ∗ m ) ac=(V_{ab} + K_a*m)(V_{cd} + K_c*m) ac=(Vab+Ka∗m)(Vcd+Kc∗m), a c = ( V a b + K b ∗ m ) ( V c d + K d ∗ m ) ac=(V_{ab} + K_b*m)(V_{cd} + K_d*m) ac=(Vab+Kb∗m)(Vcd+Kd∗m),所以 a c % m = V a b V c d % m ac\%m=V_{ab}V_{cd}\% m ac%m=VabVcd%m, b d % m = V a b V c d % m bd\%m=V_{ab}V_{cd}\% m bd%m=VabVcd%m,即 a c ≡ b d (mod m ) ac\equiv bd\text{ (mod } m) ac≡bd (mod m)
- 性质6:若 a ≡ b (mod m ) a\equiv b\text{ (mod } m) a≡b (mod m),那么 k a ≡ k b (mod m ) ka\equiv kb\text{ (mod } m) ka≡kb (mod m)
- 性质7:若 a ≡ b (mod m ) a\equiv b\text{ (mod } m) a≡b (mod m), g c d ( c , m ) = 1 gcd(c, m) = 1 gcd(c,m)=1,那么 a c ≡ b c (mod m ) \frac{a}{c} \equiv \frac{b}{c}\text{ (mod } m) ca≡cb (mod m)
- 性质8:若 a ≡ b (mod m ) a\equiv b\text{ (mod } m) a≡b (mod m),则 k a ≡ k b (mod k m ) ka\equiv kb\text{ (mod } km) ka≡kb (mod km)
- 性质9:若 a ≡ b (mod m ) a\equiv b\text{ (mod } m) a≡b (mod m), c c c为 a , b , m a,b,m a,b,m的公因数,则 a c ≡ b c (mod m c ) \frac{a}{c}\equiv \frac{b}{c}\text{ (mod } \frac{m}{c}) ca≡cb (mod cm)
- 性质10:若 a ≡ b (mod m i ) , i = 1 , 2 , ⋯ , k a\equiv b\text{ (mod } m_i), i = 1, 2, \cdots, k a≡b (mod mi),i=1,2,⋯,k,则 a ≡ b (mod lcm( m 1 , m 2 , ⋯ , m k ) ) a \equiv b \text{ (mod lcm(} m_1, m_2, \cdots, m_k)) a≡b (mod lcm(m1,m2,⋯,mk))
- 性质11:若 a ≡ b (mod m ) , c ∣ m , c > 0 a\equiv b\text{ (mod } m), c|m,c>0 a≡b (mod m),c∣m,c>0,则 a ≡ b (mod c ) a\equiv b \text{ (mod } c) a≡b (mod c)
- 性质12:若 a ≡ b (mod m ) a \equiv b \text{ (mod } m) a≡b (mod m),则 gcd ( a , m ) = gcd ( g , m ) \gcd(a ,m) = \gcd(g, m) gcd(a,m)=gcd(g,m)
参考文献: