Andrew Ng 's machine learning lecture note (11)

本文介绍如何通过划分训练集、交叉验证集及测试集来选择最优模型,并探讨了高偏差与高方差问题及其解决方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Model choosing


After,we get a model. Sometimes we will wonder how we can optimize it.In order to do so, we can divide our data set into 3 parts, First the traning set(60%),Second the cross validation set(20%), Third the test set(20%). 

For linear regression

Suppose that we have gotten several model based on the same traning set. So which model should we choose? Well, we can use the cost function to estimate the error in the cross validation set. Then we should choose the minimum error model. The test set can also help us to estimate the error.
For logistic regression

The procedure is the same as above, except the cost function should defined as followed:
and the error for the test set is as followed

Bias or high variance problem?

Bias problem means that the figure is underfitting while variance problem means the figure is over fitting.

So, how can we tell? We should consider which element leads to this problem, for example, degree of polynomial. We can plot the J(theta) of the test data and traning data in the same figure and figure out whether there is a bias problem or variance problem.
Now we have the summary on how to choose a good model as followed:

If we are suffering from a high bias problem, adding more data is not likely to help you while if we are suffering from a high variance problem,adding more data is gonna be helpful.
When we're having a model, and we want to check whether we have a high bias(underfitting) or high variance problem(overfitting), we'd better plot the J(theta) of validation set and traning set correspond to the traning examples.  When practising, remember that the validation set should remain the same, we should learn the new theta each time we increase the number of the traning examples.


内容概要:本文档详细介绍了基于MATLAB实现的多头长短期记忆网络(MH-LSTM)结合Transformer编码器进行多变量时间序列预测的项目实例。项目旨在通过融合MH-LSTM对时序动态的细致学习和Transformer对全局依赖的捕捉,显著提升多变量时间序列预测的精度和稳定性。文档涵盖了从项目背景、目标意义、挑战与解决方案、模型架构及代码示例,到具体的应用领域、部署与应用、未来改进方向等方面的全面内容。项目不仅展示了技术实现细节,还提供了从数据预处理、模型构建与训练到性能评估的全流程指导。 适合人群:具备一定编程基础,特别是熟悉MATLAB和深度学习基础知识的研发人员、数据科学家以及从事时间序列预测研究的专业人士。 使用场景及目标:①深入理解MH-LSTM与Transformer结合的多变量时间序列预测模型原理;②掌握MATLAB环境下复杂神经网络的搭建、训练及优化技巧;③应用于金融风险管理、智能电网负荷预测、气象预报、交通流量预测、工业设备健康监测、医疗数据分析、供应链需求预测等多个实际场景,以提高预测精度和决策质量。 阅读建议:此资源不仅适用于希望深入了解多变量时间序列预测技术的读者,也适合希望通过MATLAB实现复杂深度学习模型的开发者。建议读者在学习过程中结合提供的代码示例进行实践操作,并关注模型训练中的关键步骤和超参数调优策略,以便更好地应用于实际项目中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值