Andrew Ng 's machine learning lecture note (7)

本文探讨了多类别分类问题,即当输出为多个类别时如何进行有效分类。采用了一对所有(one-vs-all)策略,将多类别问题分解为多个二分类问题,并通过决策边界将数据集分为两部分来实现分类。最终将每个子问题转化为逻辑回归问题解决。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Multi-class classification

When facing the classification problem, the output are multiple values , we call this multi-class classfication problem.In order to solve the problem, we use the algorithm 'one vs all'.
Suppose that we have 3 classes here. And we use circle, trangle, cross to represent those 3 classes . 
then we use the decision boudary to classify them into two parts (one part is for class i(i=1,2,3) the other part excluding class i ) ,then again we change the problem into logistic regression problem , here we get 3 hypothesis
 
In order to make the predition of x, we have this formular.


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值