Andrew Ng 's machine learning lecture note (9)

本文深入讲解了人工神经元模型的基本概念及数学表达方式,并详细解释了权重矩阵的含义及其在神经网络各层间的传递过程。此外,还介绍了如何通过向量化简化计算过程,并探讨了一对多算法在神经网络中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Artificial Neuron Model

   (1)
(2)We should learn some denotion first to understand the above second model.

For the activation units ,we have the below expression :

Finally , we can get the conclusion that the layer J's theta is a matrix. 
stands for the number of the layer J's units .stands for the number of the layer (J+1)'s units

Vetorization rise implementation

In order to make our calcus more simple, we have the following new denotions and formulars.
 
is a transition variable . 
Finally ,   

Pay attention : When programing , it's necessary to add the bias unit manually in the process of calculating new alpha.

One vs all algorithm in neuron model

Assume that we have n classes to be classified , our model has m layers then our output layer should look like :

And it can be    ... ...
Each one represents one situation of output ,like the following example 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值