Sumdiv(数论综合模板题:快速分解因式+快速幂取模+约数和公式+递归二分求等比数列和)


Link:http://poj.org/problem?id=1845


Sumdiv
Time Limit: 1000MS Memory Limit: 30000K
Total Submissions: 16281 Accepted: 4053

Description

Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).

Input

The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.

Output

The only line of the output will contain S modulo 9901.

Sample Input

2 3

Sample Output

15

Hint

2^3 = 8. 
The natural divisors of 8 are: 1,2,4,8. Their sum is 15. 
15 modulo 9901 is 15 (that should be output). 

Source



下面题意和做法参考自博客:http://blog.youkuaiyun.com/rowanhaoa/article/details/8591077

题意:
给你两个数a,b;
求a^b的所有的因子的和模上9901;
做法:

这道题目应用定理主要有三个:

(1)   整数的唯一分解定理:

      任意正整数都有且只有一种方式写出其素因子的乘积表达式。

      A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)   其中pi均为素数

(2)   约数和公式:

对于已经分解的整数A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)

有A的所有因子之和为

    S = (1+p1+p1^2+p1^3+...p1^k1) * (1+p2+p2^2+p2^3+….p2^k2) * (1+p3+ p3^3+…+              p3^k3) * .... * (1+pn+pn^2+pn^3+...pn^kn)

(3)   同余模公式:

(a+b)%m=(a%m+b%m)%m

(a*b)%m=(a%m*b%m)%m

有了上面的数学基础,那么本题解法就很简单了:

1: 对A进行素因子分解

分解A的方法:

A首先对第一个素数2不断取模,A%2==0时 ,记录2出现的次数+1,A/=2;

当A%2!=0时,则A对下一个连续素数3不断取模...

以此类推,直到A==1为止。

 

注意特殊判定,当A本身就是素数时,无法分解,它自己就是其本身的素数分解式。

最后得到A = p1^k1 * p2^k2 * p3^k3 *...* pn^kn.
      故 A^B = p1^(k1*B) * p2^(k2*B) *...* pn^(kn*B);

2:A^B的所有约数之和为:

     sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...*                                      [1+pn+pn^2+...+pn^(an*B)].


3: 用递归二分求等比数列1+pi+pi^2+pi^3+...+pi^n:

(1)若n为奇数,一共有偶数项,则:
      1 + p + p^2 + p^3 +...+ p^n

      = (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2) * (1+p^(n/2+1))
      = (1 + p + p^2 +...+ p^(n/2)) * (1 + p^(n/2+1))

上式中红色加粗的前半部分恰好就是原式的一半,那么只需要不断递归二分求和就可以了,后半部分为幂次式,将在下面第4点讲述计算方法。

(2)若n为偶数,一共有奇数项,则:
      1 + p + p^2 + p^3 +...+ p^n

      = (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2-1) * (1+p^(n/2+1)) + p^(n/2)
      = (1 + p + p^2 +...+ p^(n/2-1)) * (1+p^(n/2+1)) + p^(n/2);

   上式红色加粗的前半部分恰好就是原式的一半,依然递归求解

4:反复平方法计算幂次式p^n

   这是本题关键所在,求n次幂方法的好坏,决定了本题是否TLE。

   以p=2,n=8为例

   常规是通过连乘法求幂,即2^8=2*2*2*2*2*2*2*2

   这样做的要做8次乘法

   而反复平方法则不同,

   定义幂sq=1,再检查n是否大于0,

While,循环过程若发现n为奇数,则把此时的p值乘到sq

{

                n=8>0 ,把p自乘一次, p=p*p=4     ,n取半 n=4

                n=4>0 ,再把p自乘一次, p=p*p=16   ,n取半 n=2

n=2>0 ,再把p自乘一次, p=p*p=256  ,n取半 n=1,sq=sq*p

n=1>0 ,再把p自乘一次, p=p*p=256^2  ,n取半 n=0,弹出循环

}

则sq=256就是所求,显然反复平方法只做了3次乘法


下面AC代码的模板参考自: http://www.cnblogs.com/kuangbin/archive/2012/08/10/2631225.html

AC code:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <vector>
#include <string>
#include <queue>
#include <stack>
#include <algorithm>
#define PI acos(-1.0)
#define LINF 1000000000000000000LL
#define eps 1e-8
#define LL long long
#define MAXN 100010 
#define MOD 9901
using namespace std;
const int INF=0x3f3f3f3f;
//******************************************
//素数筛选和合数分解
const int MAXX=10000;
int prime[MAXX+1];
void getPrime()//素数筛选模板 
{
	memset(prime,0,sizeof(prime));
    for(int i=2;i<=MAXX;i++)
    {
        if(!prime[i])prime[++prime[0]]=i;
        for(int j=1;j<=prime[0]&&prime[j]<=MAXX/i;j++)
        {
            prime[prime[j]*i]=1;
            if(i%prime[j]==0) break;
        }
    }
} 
long long factor[100][2];//factor[i][0]表示数x的第i个质因子,factor[i][1]表示数x的第i个质因子的幂次
int fatCnt;//fatCnt表示数x的质因子个数 
int getFactors(long long x)//因子分解模板,A = p1^a1 * p2^a2 * p3^a3 * pn^an,因此该函数对数x进行分解因子,
{							//获取数x的质因子和相应质因子个数,最后返回相应的质因子个数   
    fatCnt=0;
    long long tmp=x;
    for(int i=1;prime[i]<=tmp/prime[i];i++)
    {
        factor[fatCnt][1]=0;
        if(tmp%prime[i]==0)
        {
            factor[fatCnt][0]=prime[i];
            while(tmp%prime[i]==0)
            {
                factor[fatCnt][1]++;
                tmp/=prime[i];
            }
            fatCnt++;
        }
    }
    if(tmp!=1)
    {
        factor[fatCnt][0]=tmp;
        factor[fatCnt++][1]=1;
    }
    return fatCnt;
}
//******************************************
long long pow_m(long long a,long long n)//快速模幂运算,求(a^n)%MOD  
{
    long long res=1;
    long long tmp=a%MOD;
    while(n)
    {
        if(n&1){res*=tmp;res%=MOD;}
        n>>=1;
        tmp*=tmp;
        tmp%=MOD;
    }
    return res;
}
long long sum(long long p,long long n)//计算等比数列和(1+p+p^2+````+p^n)%MOD模板 
{
    if(p==0)return 0;
    if(n==0)return 1;
    if(n&1)//奇数
    {
        return ((1+pow_m(p,n/2+1))%MOD*sum(p,n/2)%MOD)%MOD;
    }
    else return ((1+pow_m(p,n/2+1))%MOD*sum(p,n/2-1)+pow_m(p,n/2)%MOD)%MOD;
}
long long ans;
int main()
{
	int A,B;
	getPrime();//素数筛选模板 
	while(scanf("%d%d",&A,&B)!=EOF)
	{
		getFactors(A);//因子分解模板,A = p1^a1 * p2^a2 * p3^a3 * pn^an,因此该函数对数x进行分解因子,
							  //获取数x的质因子和相应质因子个数,最后返回相应的质因子个数   
		/*约数和公式:
		A^B的所有约数之和sum=[1+p1+p1^2+...+p1^(a1*B)]*[1+p2+p2^2+...+p2^(a2*B)]*[1+pn+pn^2+...+pn^(an*B)].*/
		ans=1;
		for(int i=0;i<fatCnt;i++)
		{
			ans*=(sum(factor[i][0],factor[i][1]*B)%MOD);
			ans%=MOD;
		}
		printf("%I64d\n",ans);
	}
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林下的码路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值