题意:
给你两个数a,b;
求a^b的所有的因子的和模上9901;
做法:
这道题目应用定理主要有三个:
(1) 整数的唯一分解定理:
任意正整数都有且只有一种方式写出其素因子的乘积表达式。
A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn) 其中pi均为素数
(2) 约数和公式:
对于已经分解的整数A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)
有A的所有因子之和为
S = (1+p1+p1^2+p1^3+...p1^k1) * (1+p2+p2^2+p2^3+….p2^k2) * (1+p3+ p3^3+…+ p3^k3) * .... * (1+pn+pn^2+pn^3+...pn^kn)
(3) 同余模公式:
(a+b)%m=(a%m+b%m)%m
(a*b)%m=(a%m*b%m)%m
有了上面的数学基础,那么本题解法就很简单了:
1: 对A进行素因子分解
分解A的方法:
A首先对第一个素数2不断取模,A%2==0时 ,记录2出现的次数+1,A/=2;
当A%2!=0时,则A对下一个连续素数3不断取模...
以此类推,直到A==1为止。
注意特殊判定,当A本身就是素数时,无法分解,它自己就是其本身的素数分解式。
最后得到A = p1^k1 * p2^k2 * p3^k3 *...* pn^kn.
故 A^B = p1^(k1*B) * p2^(k2*B) *...* pn^(kn*B);
2:A^B的所有约数之和为:
sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...* [1+pn+pn^2+...+pn^(an*B)].
3: 用递归二分求等比数列1+pi+pi^2+pi^3+...+pi^n:
(1)若n为奇数,一共有偶数项,则:
1 + p + p^2 + p^3 +...+ p^n
= (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2) * (1+p^(n/2+1))
= (1 + p + p^2 +...+ p^(n/2)) * (1 + p^(n/2+1))
上式中红色加粗的前半部分恰好就是原式的一半,那么只需要不断递归二分求和就可以了,后半部分为幂次式,将在下面第4点讲述计算方法。
(2)若n为偶数,一共有奇数项,则:
1 + p + p^2 + p^3 +...+ p^n
= (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2-1) * (1+p^(n/2+1)) + p^(n/2)
= (1 + p + p^2 +...+ p^(n/2-1))
* (1+p^(n/2+1)) + p^(n/2);
上式红色加粗的前半部分恰好就是原式的一半,依然递归求解
4:反复平方法计算幂次式p^n
这是本题关键所在,求n次幂方法的好坏,决定了本题是否TLE。
以p=2,n=8为例
常规是通过连乘法求幂,即2^8=2*2*2*2*2*2*2*2
这样做的要做8次乘法
而反复平方法则不同,
定义幂sq=1,再检查n是否大于0,
While,循环过程若发现n为奇数,则把此时的p值乘到sq
{
n=8>0 ,把p自乘一次, p=p*p=4 ,n取半 n=4
n=4>0 ,再把p自乘一次, p=p*p=16 ,n取半 n=2
n=2>0 ,再把p自乘一次, p=p*p=256 ,n取半 n=1,sq=sq*p
n=1>0 ,再把p自乘一次, p=p*p=256^2 ,n取半 n=0,弹出循环
}
则sq=256就是所求,显然反复平方法只做了3次乘法
#include<stdio.h>
#include<iostream>
#include<string.h>
#include<math.h>
using namespace std;
#define Max 100000
#define mod 9901
long long a,b;
long long power(long long x,long long y)
{
long long t;
if(y==0) return 1%mod;
if(y==1) return x%mod;
t=power(x,y/2);
t=t*t%mod;
if(y%2==1) t=t*x%mod;
return t;
}
long long mou(long long x,long long y)
{
if(y==0)return 1;
if(y%2==0)return (((mou(x,y/2-1)%mod)*((1+power(x,y/2+1))%mod))%mod+power(x,y/2)%mod)%mod;
if(y%2!=0)return (mou(x,y/2)%mod)*((1+power(x,y/2+1))%mod)%mod;
}
void dos()
{
long long pn[Max];
long long kn[Max];
long long t,k,i,res;
t=(int)sqrt(a*1.0);
k=0;
for(i=2;i<=t;i+=2)
{
if(a%i==0)
{
pn[k]=i;
kn[k]=0;
while(a%i==0)
{
kn[k]++;
a=a/i;
}
}
k++;
if(i==2)i--;
if(a==1)break;
}
if(a!=1)
{
pn[k]=a;
kn[k++]=1;
}
for(i=0;i<k;i++)
{
kn[i]=kn[i]*b;
}
res=1;
for(i=0;i<k;i++)
{
res=res*mou(pn[i],kn[i])%mod;
}
printf("%lld\n",res);
}
int main()
{
cin>>a>>b;
dos();
return 0;
}