↑↑↑关注后"星标"Datawhale
每日干货 & 每月组队学习,不错过
Datawhale干货
作者:陈信达,华北电力大学,Datawhale成员
目标检测是计算机视觉领域的一大任务,大致分为一阶段目标检测与两阶段目标检测。其中一阶段目标检测模型以YOLO系列为代表。最新的YOLOv5在各个数据集上体现出收敛速度快、模型可定制性强的特点,值得关注。本文主要讲解如何从零训练自己的YOLOv5模型与一些重要参数的含义。
本文的训练数据使用的是开源数据集SHWD,已上传开源数据平台Graviti,在文末可下载。
在学习或研究目标检测的同学,后台回复“210702”可进群一起交流。
一、配置环境
1.1 创建虚拟环境
俗话说,环境配不对,学习两行泪,首先我们需要安装Anaconda(Anaconda安装非常简单并且百度上有大量资料),然后创建一个专门用来训练YOLOv5的虚拟环境。按win+r打开“运行对话框”,输入“cmd”打开cmd。输入下面代码创建虚拟环境:
conda create -n course_yolov5 python==3.8
其中“course_yolov5”是虚拟环境的名称,“python==3.8”是虚拟环境的python版本。然后我们需要将Ultralytics开源的YOLOv5代码Clone或下载到本地,可以直接点击Download ZIP进行下载,
下载地址:https://github.com/ultralytics/yolov5

接下来激活刚刚创建的虚拟环境并解压刚下好的压缩文件,将工作路径切换到解压好的文件夹下:
conda activate course_yolov5
cd D:\Study\PyCharm20\PycharmProjects\course_yolov5\yolov5-master
d:
注意:这里需要将" D:\Study\PyCharm20\PycharmProjects\course_yolov5"替换为自己的路径。
1.2 安装模块:
在安装模块之前,最好先更换pip源为阿里源或国科大源,然后安装yolov5需要的模块,记住工作路径要在yolov5文件夹下:
python -m pip install -r requirements.txt
如果没有安装cuda默认安装pytorch-cpu版,如果有gpu可以安装pytorch-gpu版。
pytorch gpu版下载指导:
https://mp.weixin.qq.com/s/ZTzfC7xp8PVMvOONVIiK6g
二、检测
2.1 COCO数据集
在正确配置好环境后就可以检测自己的图片或视频了。YOLOv5已经在COCO数据集上训练好,COCO数据集一共有80个类别,如果您需要的类别也在其中的话,可以直接用训练好的模型进行检测。这80个类分别是:
['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbre