电商数据分析项目总结!

本文通过对京东2020年5月25日家电冰箱10%随机抽样订单的分析,探讨订单取消、支付比例、价格分布及地域特征。数据显示,约28.9%的订单被取消,15%的用户未支付,主要消费价位在2K以下。0点和20点的订单特点不同,0点可能存在冲动购物,20点则相对理智。订单主要集中在一线城市和经济发达省份,卡萨帝等品牌占据高端市场。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

↑↑↑关注后"星标"Datawhale

每日干货 & 每月组队学习,不错过

 Datawhale干货 

作者:牧小熊,华中农业大学,Datawhale原创作者

订单数据作为电商数据分析中的基础分析项目,本项目就京东的订单数据进行分析。通过数据分析和可视化深挖数据产生的原因,掌握基础的数据分析能力。

1.关于本项目

1.1数据来源

本次数据来源于京东2020年5月25日 大家电-冰箱的订单数据 按照10%的随机抽样后进行数据脱敏最后得到的订单数据,共有订单数据大约70K,数据来源于公开网络数据。

公众号(Datawhale)后台回复“202013”获取打包的项目源码和数据

1.2数据所包含信息

订单中的属性将其分成了3类,分别是用户属性、订单属性以及商品属性

2.数据预处理

本项目使用python对数据进行处理 使用plotly进行数据可视化

import pandas as pd
import numpy as np
import plotly_express as px
import plotly.offline as of
import plotly as py
import plotly.graph_objs as go

读取提供的数据

df=pd.read_csv('data.csv',sep='\t', encoding="utf-8", dtype=str)

查看数据的缺失值

df.isnull().sum().sort_values(ascending=False)

user_site_city_id 38190
user_site_province_id 38033
check_account_tm 23271

通过观察发现,这3个数据有部分缺失值,其中user_site_city_id 用户所在城市编号,user_site_province_id 用户所在省份的编号,check_account_tm支付时间

这部分数据的缺失是因为用户填写个人资料时跳过的部分,当然这不影响我们整个数据的分析

我们首先是将数据的类型进行转换 同时处理缺失值和异常值

  • 值得注意的是,通过观察我们发现冰箱最低的价格是288元,但是数据中发现了很多低于288元的订单数据,我们认为这部分数据不能真实代表冰箱实际的订单数据,可能出现了补差价或者补运费的情况,因此这样

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值