决策树算法十问及经典面试问题

640?wx_fmt=jpeg


简介和算法

决策树是机器学习最常用的算法之一,它将算法组织成一颗树的形式。其实这就是将平时所说的if-then语句构建成了树的形式。这个决策树主要包括三个部分:内部节点、叶节点和边。内部节点是划分的属性,边代表划分的条件,叶节点表示类别。构建决策树 就是一个递归的选择内部节点,计算划分条件的边,最后到达叶子节点的过程。

伪代码: 输入: 训练数据集D,特征集A,阈值. 输出: 决策树T.

  1. 如果D中所有实例属于同一类 ,则置T为单结点树,并将 作为该结点的类,返回T.
  2. 如果 , 则置T为单结点树,并将D中最多的类 作为该节点的类,返回T.
  3. 否则,根据相应公式计算A中各个特征对D的(信息增益、信息增益比、基尼指数等),选择最合适的特征
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值