Prompt编排的“顶层设计”!深度解析解释器模式,如何为LLM构建DSL。

解释器模式用于:

把一种语言(DSL)解析成语法树,再按规则执行。

非常适合 LLM,比如:

  • Prompt DSL
  • Chain-of-Thought DSL
  • Function Call DSL
  • Workflow DSL
  • Agent DSL

下面给你一个真正“解释器模式”的强例子。


⭐ 真·Interpreter 实现:自定义 Prompt DSL

目标:支持这样一个迷你语言:

DEFINE PERSON = "Jack"ASK "What is PERSON doing?"ASK "Write a poem about PERSON"

最终会发送两个 Prompt:

  • What is Jack doing?
  • Write a poem about Jack

Step 1:定义语法节点(终结符与非终结符)

classExpression:definterpret(self, context):raise NotImplementedError

终结符表达式:常量赋值

classDefineExpression(Expression):def__init__(self, variable, value):        self.variable = variable        self.value = valuedefinterpret(self, context):        context[self.variable]= self.value

终结符表达式:发起询问

classAskExpression(Expression):def__init__(self, message):        self.message = messagedefinterpret(self, context):# 替换变量for var, value in context.items():            self.message = self.message.replace(var, value)print(">>> LLM 请求:", self.message)return self.message

非终结符表达式:语句列表

classSequenceExpression(Expression):def__init__(self, expressions):        self.expressions = expressionsdefinterpret(self, context):        results =[]for expr in self.expressions:            res = expr.interpret(context)if res:                results.append(res)return results

Step 2:解析 DSL 生成语法树(重点!)

这是真正的解释器模式核心。

defparse_script(script:str):    expressions =[]for line in script.splitlines():        line = line.strip()if line.startswith("DEFINE"):            _, var, _, value = line.split(maxsplit=3)            value = value.strip('"')            expressions.append(DefineExpression(var, value))elif line.startswith("ASK"):            msg = line[4:].strip().strip('"')            expressions.append(AskExpression(msg))return SequenceExpression(expressions)

Step 3:执行 DSL

script ="""DEFINE PERSON = "Jack"ASK "What is PERSON doing?"ASK "Write a poem about PERSON""""tree = parse_script(script)context ={}tree.interpret(context)

输出:

>>> LLM 请求: What is Jack doing?>>> LLM 请求: Write a poem about Jack

⭐ 真正体现 Interpreter 模式的点

  • 语言
  • 语法规则
  • 语法树(AST)
  • 解释执行逻辑
  • 各种表达式(Define/Ask/Sequence)对应 终结符 / 非终结符
  • 无需动客户端

这就是 100% 正宗的 解释器模式

那么,如何系统的去学习大模型LLM?

作为一名深耕行业的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费】
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值