Hdu4027(线段树开根号区间求和)

本文探讨了在处理大量数值更新和查询问题时,如何利用线段树进行高效优化。通过对特定数学运算(如开方)特性的理解,实现更新操作的次数限制,避免了时间复杂度过高的问题。文章详细介绍了算法思路、代码实现及关键优化技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:

给定100000个数,两种操作,
0 i j表示将i j这段的数字都开根号(向下取整)
1 i j表示查询i j之间的所有值的和
所有的和都不超过64位

思路:

如果直接用线段树更新会tle,此题的关键是要理解对任何64位以内的值,开根号最多不会超过7次,所以用线段树做,更新到叶子节点的次数最多7次,如果叶子节点已经更新为1了,那么再开根号也不会变了。

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define lson root<<1, l, mid
#define rson root<<1|1, mid+1, r
using namespace std;
const int INF = 0x3f3f3f3f;
typedef long long LL;
const int maxn = 100000+5;
LL Tree[maxn<<2];

void push_up(int root){
	Tree[root] = Tree[root<<1] + Tree[root<<1|1];
}
void Stree_build(int root, int l, int r){
	if(l == r){
		scanf("%lld", &Tree[root]);
		return;
	}
	int mid = (l+r) >> 1;
	Stree_build(lson);
	Stree_build(rson);
	push_up(root);
}
void update(int la, int rb, int l, int r, int root){
	if(la <= l&&rb >= r&&Tree[root] == r-l+1) return;	// 剪枝
	if(l == r){
		Tree[root] = (LL)sqrt(1.0*Tree[root]);
		return;
	}
	int mid = (l+r) >> 1;
	if(la <= mid)
		update(la, rb, l, mid, root<<1);
	if(rb > mid)
		update(la, rb, mid+1, r, root<<1|1);
	push_up(root); 
}
LL ans;
void Query(int la, int rb, int l, int r, int root){
	if(la <= l&&rb >= r){
		ans+= (LL)Tree[root];
		return;
	}
	if(l == r) return;
	int mid = (l+r) >> 1;
	if(la <= mid)
		Query(la, rb, l, mid, root<<1);
	if(rb > mid)
		Query(la, rb, mid+1, r, root<<1|1);
	push_up(root); 
}

int main()
{
	freopen("in.txt","r",stdin);
	int n, m, op,a,b;
	int kase = 1;
	while(scanf("%d",&n) == 1&&n){
		Stree_build(1, 1, n);
		scanf("%d", &m);
		printf("Case #%d:\n", kase++);
		while(m--){
			scanf("%d%d%d", &op,&a,&b);
			if(a > b) swap(a, b);
			if(0 == op){
				update(a, b, 1, n, 1);
			}
			else{
				ans = 0;
				Query(a, b, 1, n, 1);
				printf("%lld\n", ans); 
			}
		}
		printf("\n"); 
	}

	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值