题意:
n个点,每个点有权值ai,从i到j的边权为为(aj−ai)的3次方。问从1到达k的最短路,不能到达和路径长小于3输出? 其它输出长度。
思路:
要注意权值(立方)可能为负,所以要判断负环。当出现负环后,dfs寻找与负环相关的 点,和负环相关的点最后的花费都是负无穷。
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
#pragma comment(linker, "/STACK:102400000,102400000")
typedef long long LL;
const int INF = 0x3f3f3f3f;
const int maxn = 200+5;
using namespace std;
int n,m;
int P[maxn];
bool Cir[maxn]; // 标记是否有负圈
int head[maxn], cur;
struct Edge{
int v,w,next;
};
Edge edges[100000];
void init(int a){
for(int i = 0; i <= a; ++i) head[i] = -1;
cur = 0;
}
void addEdge(int u, int v, int w){
edges[cur].v = v; edges[cur].w = w;
edges[cur].next = head[u]; head[u] = cur++;
}
void dfs(int u){
Cir[u] = 1;
for(int i = head[u]; i != -1; i = edges[i].next){
int v = edges[i].v;
if(!Cir[v]) dfs(v);
}
}
struct Node{
int u,d;
Node(int a, int b):u(a),d(b){}
bool operator < (const Node& rhs) const{
return d > rhs.d;
}
};
int d[maxn], cnt[maxn];
bool inq[maxn];
void BellmanFord(int s){
for(int i = 1; i <= n; ++i) { d[i] = INF; inq[i] = 0;}
d[s] = 0;
memset(cnt, 0, sizeof(cnt)); cnt[s] = 1;
memset(Cir, 0, sizeof(Cir));
queue<int> Q;
Q.push(s);
while(!Q.empty()){
int u = Q.front(); Q.pop();
inq[u] = 0;
for(int i = head[u]; i != -1; i = edges[i].next){
int v = edges[i].v, w = edges[i].w;
if(Cir[v]) continue;
if(d[v] > d[u] + w){
d[v] = d[u] + w;
if(!inq[v]){ Q.push(v); inq[v] = 1; if(++cnt[v] > n) dfs(v);}
}
}
}
}
int main()
{
//freopen("in.txt","r",stdin);
int s = 1, kase = 1;
int T; scanf("%d",&T);
while(T--){
scanf("%d",&n);
init(n);
for(int i = 1; i <= n; ++i) scanf("%d", &P[i]);
scanf("%d",&m);
for(int i = 0; i < m; ++i){
int a,b; scanf("%d%d",&a,&b);
addEdge(a,b, (P[b]-P[a])*(P[b]-P[a])*(P[b]-P[a]));
}
BellmanFord(s);
int q; scanf("%d",&q);
printf("Case %d:\n", kase++);
for(int i = 1; i <= q; ++i){
int t; scanf("%d",&t);
if(Cir[t]||d[t] == INF||d[t] < 3) printf("?\n");
else printf("%d\n", d[t]);
}
}
fclose(stdin);
return 0;
}